

Filesystem encryption

Pascal Engélibert

University of Bordeaux

8 April 2024

Summary

Summary

- Why to encrypt
- How to encrypt
- Attacks
- Defences
- Implementations

Why to encrypt

You have something to hide

If your drive or computer is stolen, you want to protect :

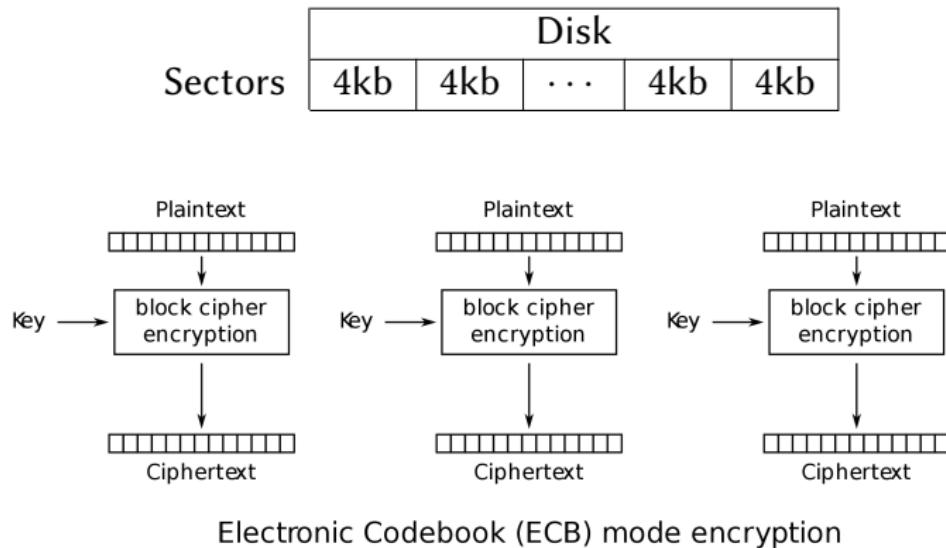
- Passwords, private keys
- Sensitive, personal data
- Evidence
- Root-me solutions

How to encrypt

What properties are needed?

- Confidentiality
- Fast random access
- Small space waste

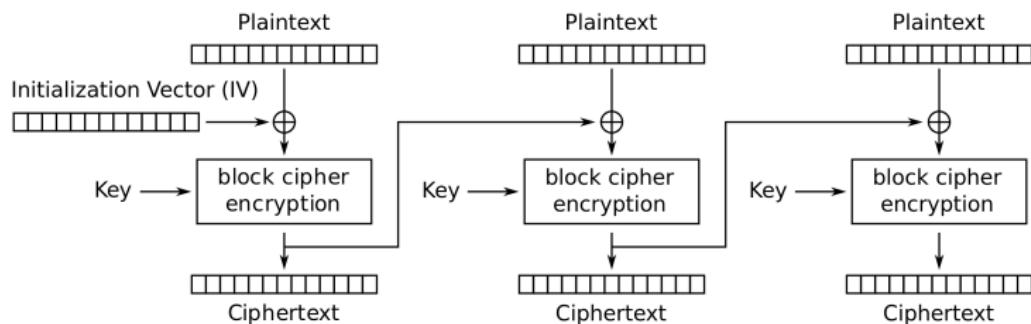
How to encrypt


What properties are needed?

- Confidentiality
- Fast random access
 - ⇒ use small blocks! (physical sectors : 4kb)
- Small space waste
 - ⇒ do not store additional metadata for sectors

Sectors	Disk				
	4kb	4kb	...	4kb	4kb

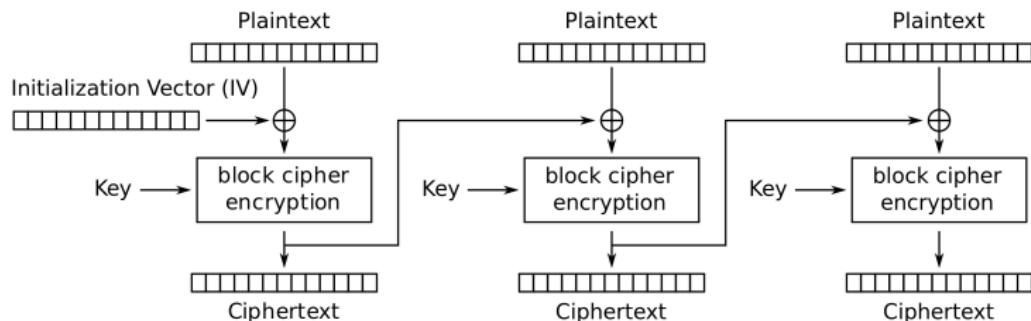
How to encrypt


What about ECB?

How to encrypt

We need Initialization Vectors!

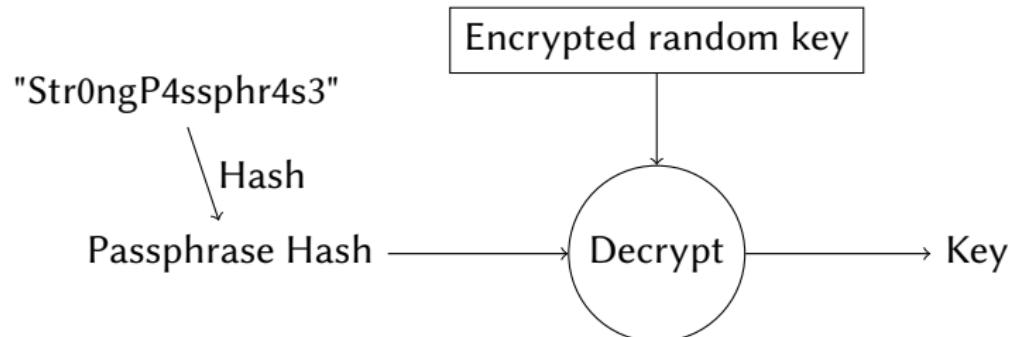
Disk					
Sectors	4kb		4kb	...	4kb
Blocks	128b	...	128b
IVs	$IV(0)$		$IV(1)$		$IV(N - 1)$


Cipher Block Chaining (CBC) mode encryption

How to encrypt

We need Initialization Vectors!

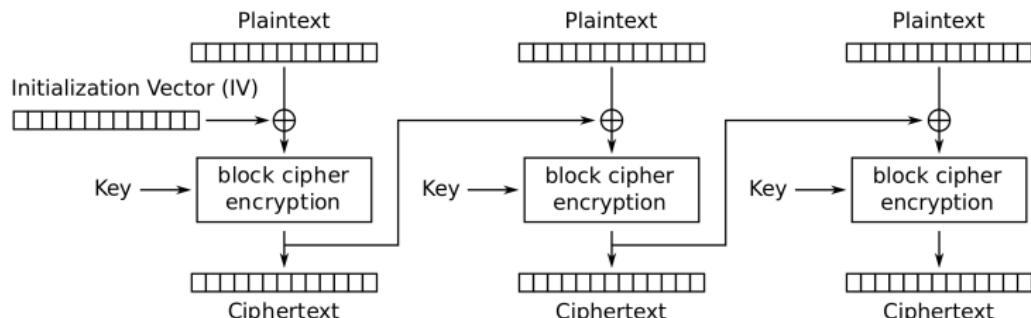
Disk					
Sectors	4kb		4kb	...	4kb
Blocks	128b	...	128b
IVs	$IV(0)$		$IV(1)$		$IV(N - 1)$


ESSIV (Encrypted Sector Salt IV) : $IV(n) = E(H(K), n)$

Cipher Block Chaining (CBC) mode encryption

How to encrypt

Key management


- Multiple key slots
- Key derivation algorithm (Argon2)
- You can change your passphrase without changing the key
(changing the key means re-encrypting all the filesystem)

Attacks

Malleability

CBC does not ensure integrity nor authenticity!

If you know a block's plaintext, you can control subsequent blocks.

Cipher Block Chaining (CBC) mode encryption

Attacks

Back to the Past

An attacker can restore a previous state of an entire sector.

Attacks

The Evil Maid Attack

Oops, the maid installed a keylogger!

- Rootkit
- Hardware keylogger
- Firmware replacement

Attacks

Force

The encryption metadata are in clear!

Hence an attacker knows you are using encryption.

- It can be illegal to refuse to disclose a password.
- An attacker can torture you to obtain the password.

Kill switch

They are coming to take your drives!

- Remove the key stored on the drive
- Remove it from the RAM
- What about the drive's cache?
- What about key backups?
- You may be accused of evidence destruction.

Kill switch

They already took your drives!

If the wrong passphrase is entered, the key is removed.

- They can make a cold backup.
- They can detect the trap.
- They can use their own decryption software.

Plausible denialability

Pretend there is nothing

Yes, my hard disk is empty, and so what?

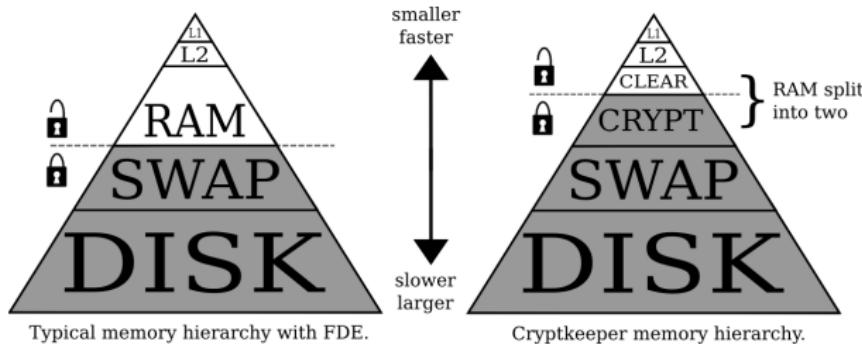
- Where do you store the key and metadata?
- No metadata means weaker security.
- They may not believe you.
- What if they notice you write "random" bytes in "empty" regions?

Plausible denialability

Pretend there is something else (steganography)

Yes, I have a hard disk full of random pictures, and so what?

(a) Original


(b) Extracted

- Poor capacity and performance.
- How do you hide the steganography software?
- Where do you store the key and metadata?
- They may not believe you.

RAM encryption

CryptKeeper

Experimental : keep most of the RAM encrypted
(mitigates Cold Boot Attacks)

Drawback : up to 9× slower
still research

Implementations

On Linux

LUKS
Linux Unified Key Setup

Implementations

On Windows

BitLocker (Microsoft)

VeraCrypt (free software)

Sources & Credits

- Cryptsetup Documentation
- Can the NSA break BitLocker? (Schneier on Security)
- CryptKeeper, 2009
- Are cold boot attacks still feasible: a case study on Raspberry Pi with stacked memory, 2021
- Cold Boot Attacks are Still Hot: Security Analysis of Memory Scramblers in Modern Processors, 2017
- Hard Disk Drive : Hannes Grobe, CC BY-SA 4.0, [link]
- Steganography examples : Cyp, CC BY-SA 3.0, [cat] [tree]
- Evil Maid : The Handmaid's Tale (Hulu series)
- Font : Linux Libertine