Re-wrote socket implementations to be more compatible with embedded-nal

This commit is contained in:
Jonah Dahlquist 2020-11-18 14:09:34 -08:00
commit f546ff2011
17 changed files with 673 additions and 1603 deletions

View file

@ -13,4 +13,6 @@ edition = "2018"
[dependencies]
byteorder = { version = "1.3.4", default-features = false }
embedded-hal = "0.2.4"
embedded-nal = { path = "../embedded-nal" }
bit_field = "0.10.1"
nb = "0.1.2"

View file

@ -1,4 +1,4 @@
use byteorder::{BigEndian, ByteOrder};
use core::fmt;
use embedded_hal::digital::v2::OutputPin;
use embedded_hal::spi::FullDuplex;
@ -34,33 +34,39 @@ pub struct ActiveFourWire<Spi: FullDuplex<u8>, ChipSelect: OutputPin> {
impl<Spi: FullDuplex<u8>, ChipSelect: OutputPin> ActiveBus for ActiveFourWire<Spi, ChipSelect> {
type Error = FourWireError<Spi::Error, ChipSelect::Error>;
fn transfer_frame<'a>(
&mut self,
block: u8,
address: u16,
is_write: bool,
data: &'a mut [u8],
) -> Result<&'a mut [u8], Self::Error> {
let mut control_phase = block << 3;
if is_write {
control_phase |= WRITE_MODE_MASK;
}
fn read_frame(&mut self, block: u8, address: u16, data: &mut [u8]) -> Result<(), Self::Error> {
let address_phase = address.to_be_bytes();
let control_phase = block << 3;
let data_phase = data;
let mut address_phase = [0u8; 2];
BigEndian::write_u16(&mut address_phase, address);
self.cs
.set_low()
.map_err(|e| FourWireError::ChipSelectError(e))?;
Self::transfer_bytes(&mut self.spi, &mut address_phase)
.and_then(|_| Self::transfer_byte(&mut self.spi, &mut control_phase))
.and_then(|_| Self::transfer_bytes(&mut self.spi, data_phase))
.map_err(|e| FourWireError::SpiError(e))?;
Self::write_bytes(&mut self.spi, &address_phase)
.and_then(|_| Self::transfer_byte(&mut self.spi, control_phase))
.and_then(|_| Self::read_bytes(&mut self.spi, data_phase))
.map_err(|e| FourWireError::SpiError(e))?;
self.cs
.set_high()
.map_err(|e| FourWireError::ChipSelectError(e))?;
Ok(data_phase)
Ok(())
}
fn write_frame(&mut self, block: u8, address: u16, data: &[u8]) -> Result<(), Self::Error> {
let address_phase = address.to_be_bytes();
let control_phase = block << 3 | WRITE_MODE_MASK;
let data_phase = data;
self.cs
.set_low()
.map_err(|e| FourWireError::ChipSelectError(e))?;
Self::write_bytes(&mut self.spi, &address_phase)
.and_then(|_| Self::transfer_byte(&mut self.spi, control_phase))
.and_then(|_| Self::write_bytes(&mut self.spi, data_phase))
.map_err(|e| FourWireError::SpiError(e))?;
self.cs
.set_high()
.map_err(|e| FourWireError::ChipSelectError(e))?;
Ok(())
}
}
impl<Spi: FullDuplex<u8>, ChipSelect: OutputPin> ActiveFourWire<Spi, ChipSelect> {
@ -74,3 +80,17 @@ pub enum FourWireError<SpiError, ChipSelectError> {
SpiError(SpiError),
ChipSelectError(ChipSelectError),
}
impl<SpiError, ChipSelectError> fmt::Debug for FourWireError<SpiError, ChipSelectError> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(
f,
"FourWireError::{}",
match self {
Self::SpiError(_) => "SpiError",
Self::ChipSelectError(_) => "ChipSelectError",
}
)
}
}
// TODO impl From and remove map_errs

View file

@ -1,3 +1,4 @@
use core::fmt::Debug;
use embedded_hal::spi::FullDuplex;
mod four_wire;
@ -11,31 +12,27 @@ pub use self::three_wire::ThreeWire;
pub trait Bus {}
pub trait ActiveBus {
type Error;
type Error: Debug;
fn transfer_frame<'a>(
&mut self,
block: u8,
address: u16,
is_write: bool,
data: &'a mut [u8],
) -> Result<&'a mut [u8], Self::Error>;
fn read_frame(&mut self, block: u8, address: u16, data: &mut [u8]) -> Result<(), Self::Error>;
fn transfer_bytes<'a, Spi: FullDuplex<u8>>(
spi: &mut Spi,
bytes: &'a mut [u8],
) -> Result<&'a mut [u8], Spi::Error> {
fn write_frame(&mut self, block: u8, address: u16, data: &[u8]) -> Result<(), Self::Error>;
fn read_bytes<Spi: FullDuplex<u8>>(spi: &mut Spi, bytes: &mut [u8]) -> Result<(), Spi::Error> {
for byte in bytes.iter_mut() {
Self::transfer_byte(spi, byte)?;
*byte = Self::transfer_byte(spi, *byte)?;
}
Ok(bytes)
Ok(())
}
fn transfer_byte<'a, Spi: FullDuplex<u8>>(
spi: &mut Spi,
byte: &'a mut u8,
) -> Result<&'a mut u8, Spi::Error> {
*byte = block!(spi.send(*byte)).and_then(|_| block!(spi.read()))?;
Ok(byte)
fn write_bytes<Spi: FullDuplex<u8>>(spi: &mut Spi, bytes: &[u8]) -> Result<(), Spi::Error> {
for byte in bytes.iter() {
Self::transfer_byte(spi, *byte)?;
}
Ok(())
}
fn transfer_byte<Spi: FullDuplex<u8>>(spi: &mut Spi, byte: u8) -> Result<u8, Spi::Error> {
block!(spi.send(byte)).and_then(|_| block!(spi.read()))
}
}

View file

@ -1,4 +1,4 @@
use byteorder::{BigEndian, ByteOrder};
use core::fmt;
use embedded_hal::spi::FullDuplex;
use crate::bus::{ActiveBus, Bus};
@ -30,7 +30,7 @@ pub struct ActiveThreeWire<Spi: FullDuplex<u8>> {
}
impl<Spi: FullDuplex<u8>> ActiveBus for ActiveThreeWire<Spi> {
type Error = Spi::Error;
type Error = ThreeWireError<Spi::Error>;
/// Transfers a frame with an arbitrary data length in FDM
///
@ -43,17 +43,13 @@ impl<Spi: FullDuplex<u8>> ActiveBus for ActiveThreeWire<Spi> {
/// (address 23) 0xF0 0xAB 0x83 0xB2
/// (address 27) 44 2C
/// (address 29) AA
fn transfer_frame<'a>(
fn read_frame(
&mut self,
block: u8,
mut address: u16,
is_write: bool,
data: &'a mut [u8],
) -> Result<&'a mut [u8], Self::Error> {
data: &mut [u8],
) -> Result<(), Self::Error> {
let mut control_phase = block << 3;
if is_write {
control_phase |= WRITE_MODE_MASK;
}
let mut data_phase = &mut data[..];
let mut last_length_written: u16;
@ -69,19 +65,51 @@ impl<Spi: FullDuplex<u8>> ActiveBus for ActiveThreeWire<Spi> {
last_length_written = 1;
}
let mut address_phase = [0u8; 2];
BigEndian::write_u16(&mut address_phase, address);
Self::transfer_bytes(&mut self.spi, &mut address_phase)
.and_then(|_| Self::transfer_byte(&mut self.spi, &mut control_phase))
.and_then(|_| Self::transfer_bytes(
&mut self.spi,
&mut data_phase[..last_length_written as usize]
))?;
let address_phase = address.to_be_bytes();
Self::write_bytes(&mut self.spi, &address_phase)
.and_then(|_| Self::transfer_byte(&mut self.spi, control_phase))
.and_then(|_| {
Self::read_bytes(
&mut self.spi,
&mut data_phase[..last_length_written as usize],
)
})
.map_err(|e| ThreeWireError::SpiError(e))?;
address += last_length_written;
data_phase = &mut data_phase[last_length_written as usize..];
}
Ok(data_phase)
Ok(())
}
fn write_frame(&mut self, block: u8, mut address: u16, data: &[u8]) -> Result<(), Self::Error> {
let mut control_phase = block << 3 | WRITE_MODE_MASK;
let mut data_phase = &data[..];
let mut last_length_written: u16;
while data_phase.len() > 0 {
if data_phase.len() >= 4 {
control_phase |= FIXED_DATA_LENGTH_MODE_4;
last_length_written = 4;
} else if data_phase.len() >= 2 {
control_phase |= FIXED_DATA_LENGTH_MODE_2;
last_length_written = 2;
} else {
control_phase |= FIXED_DATA_LENGTH_MODE_1;
last_length_written = 1;
}
let address_phase = address.to_be_bytes();
Self::write_bytes(&mut self.spi, &address_phase)
.and_then(|_| Self::transfer_byte(&mut self.spi, control_phase))
.and_then(|_| {
Self::write_bytes(&mut self.spi, &data_phase[..last_length_written as usize])
})
.map_err(|e| ThreeWireError::SpiError(e))?;
address += last_length_written;
data_phase = &data_phase[last_length_written as usize..];
}
Ok(())
}
}
@ -90,3 +118,19 @@ impl<Spi: FullDuplex<u8>> ActiveThreeWire<Spi> {
(ThreeWire::new(), self.spi)
}
}
pub enum ThreeWireError<SpiError> {
SpiError(SpiError),
}
impl<SpiError> fmt::Debug for ThreeWireError<SpiError> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(
f,
"ThreeWireError::{}",
match self {
Self::SpiError(_) => "SpiError",
}
)
}
}
// TODO impl From and remove map_errs

View file

@ -2,52 +2,14 @@
// #![allow(unused)]
#![deny(broken_intra_doc_links)]
extern crate bit_field;
extern crate byteorder;
extern crate embedded_hal;
extern crate embedded_nal;
#[macro_use(block)]
extern crate nb;
// use hal::digital::v2::OutputPin;
// use hal::spi::FullDuplex;
// use byteorder::BigEndian;
// use byteorder::ByteOrder;
// const COMMAND_READ: u8 = 0x00 << 2;
// const COMMAND_WRITE: u8 = 0x01 << 2;
// const VARIABLE_DATA_LENGTH: u8 = 0b_00;
// const FIXED_DATA_LENGTH_1_BYTE: u8 = 0b_01;
// const FIXED_DATA_LENGTH_2_BYTES: u8 = 0b_10;
// const FIXED_DATA_LENGTH_4_BYTES: u8 = 0b_11;
/// IP Address struct. Represents an IP address as a u8 array of length 4. Can be instantiated with `IpAddress::new`
#[derive(Copy, Clone, PartialOrd, PartialEq, Default, Debug)]
pub struct IpAddress {
pub address: [u8; 4],
}
impl IpAddress {
/// Instantiate a new IP address with u8s for each address fragment
pub fn new(a0: u8, a1: u8, a2: u8, a3: u8) -> IpAddress {
IpAddress {
address: [a0, a1, a2, a3],
}
}
}
impl ::core::fmt::Display for IpAddress {
/// String formatter for IP addresses, useful for debugging output
fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
write!(
f,
"{}.{}.{}.{}",
self.address[0], self.address[1], self.address[2], self.address[3],
)
}
}
/// MAC address struct. Represents a MAC address as a u8 array of length 6. Can be instantiated with `MacAddress::new`
#[derive(Copy, Clone, PartialOrd, PartialEq, Default, Debug)]
pub struct MacAddress {
@ -55,54 +17,11 @@ pub struct MacAddress {
}
impl MacAddress {
/// Instantiate a new MAC address with u8s for each address fragment
pub fn new(a0: u8, a1: u8, a2: u8, a3: u8, a4: u8, a5: u8) -> MacAddress {
MacAddress {
address: [a0, a1, a2, a3, a4, a5],
}
pub fn new(n0: u8, n1: u8, n2: u8, n3: u8, n4: u8, n5: u8) -> Self {
MacAddress { address: [n0, n1, n2, n3, n4, n5] }
}
}
impl ::core::fmt::Display for MacAddress {
/// String formatter for MAC addresses, useful for debugging output
fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
write!(
f,
"{:02x}:{:02x}:{:02x}:{:02x}:{:02x}:{:02x}",
self.address[0],
self.address[1],
self.address[2],
self.address[3],
self.address[4],
self.address[5],
)
}
}
// /// Error enum that represents the union between SPI hardware errors and digital IO pin errors. Returned as an Error
// /// type by many W5500 that talk to the chip
// #[derive(Copy, Clone, Debug)]
// pub enum TransferError<SpiError, ChipSelectError> {
// SpiError(SpiError),
// ChipSelectError(ChipSelectError),
// }
// if let OnWakeOnLan::InvokeInterrupt = settings.on_wake_on_lan {
// value |= 1 << 5;
// }
// if let OnPingRequest::Ignore = settings.on_ping_request {
// value |= 1 << 4;
// }
// if let ConnectionType::PPoE = settings.connection_type {
// value |= 1 << 3;
// }
// if let ArpResponses::DropAfterUse = settings.arp_responses {
// value |= 1 << 1;
// }
/// Settings for wake on LAN. Allows the W5500 to optionally emit an interrupt upon receiving a packet
#[repr(u8)]
#[derive(Copy, Clone, PartialOrd, PartialEq)]
@ -154,792 +73,6 @@ impl Default for Mode {
}
}
// /// Represents a socket that has not yet been initialized for a particular protocol
// pub struct UninitializedSocket {
// socket: Socket
// }
// /// Represents a socket that has been initialized to use the UDP protocol
// pub struct UdpSocket {
// socket: Socket,
// active_w5500: ActiveW5500,
// }
// impl UdpSocket {
// pub uninitialize() -> Result<(UninitializedSocket, ActiveW5500)
// }
// /// The first level of instantiating communication with the W5500. It can not communicate by itself, but calling
// /// `activate` will return an `ActiveW5500` which can.
// pub struct W5500<'a, ChipSelect: OutputPin> {
// chip_select: &'a mut ChipSelect,
// sockets: u8, // each bit represents whether the corresponding socket is available for take
// }
// impl<'b, 'a: 'b, ChipSelectError, ChipSelect: OutputPin<Error = ChipSelectError>>
// W5500<'a, ChipSelect>
// {
// fn new(chip_select: &'a mut ChipSelect) -> Self {
// W5500 {
// chip_select,
// sockets: 0xFF,
// }
// }
// /// Primary method for instantiating. Briefly activates the W5500, and sets it up with the specified configuration
// pub fn with_initialisation<'c, Spi: FullDuplex<u8>>(
// chip_select: &'a mut ChipSelect,
// spi: &'c mut Spi,
// wol: OnWakeOnLan,
// ping: OnPingRequest,
// mode: ConnectionType,
// arp: ArpResponses,
// ) -> Result<Self, TransferError<Spi::Error, ChipSelectError>> {
// let mut w5500 = Self::new(chip_select);
// {
// let mut w5500_active = w5500.activate(spi)?;
// unsafe {
// w5500_active.reset()?;
// }
// w5500_active.update_operation_mode(wol, ping, mode, arp)?;
// }
// Ok(w5500)
// }
// /// Returns the requested socket if it is not already used.
// pub fn take_socket(&mut self, socket: Socket) -> Option<UninitializedSocket> {
// let mask = (0x01 << socket.number());
// if self.sockets & mask == mask {
// self.sockets &= !mask;
// Some(UninitializedSocket(socket))
// } else {
// None
// }
// }
// /// Creates a new `ActiveW5500` with the provided `FullDuplex` implementation
// pub fn activate<'c, Spi: FullDuplex<u8>>(
// &'b mut self,
// spi: &'c mut Spi,
// ) -> Result<ActiveW5500<'b, 'a, 'c, ChipSelect, Spi>, TransferError<Spi::Error, ChipSelectError>>
// {
// Ok(ActiveW5500(self, spi))
// }
// }
// /// Struct that can communicate with the W5500 chip, configuring it and reading/writing to the registers on a low level
// pub struct ActiveW5500<'a, 'b: 'a, 'c, ChipSelect: OutputPin, Spi: FullDuplex<u8>>(
// &'a mut W5500<'b, ChipSelect>,
// &'c mut Spi,
// );
// impl<
// ChipSelectError,
// ChipSelect: OutputPin<Error = ChipSelectError>,
// SpiError,
// Spi: FullDuplex<u8, Error = SpiError>,
// > ActiveW5500<'_, '_, '_, ChipSelect, Spi>
// {
// /// Returns the requested socket if it is not already used
// pub fn take_socket(&mut self, socket: Socket) -> Option<UninitializedSocket> {
// self.0.take_socket(socket)
// }
// /// Yields an uninitialized socket back to the pool
// pub fn release_socket(&mut self, socket: UninitializedSocket) -> () {
// self.0.reset_interrupt(socket.0, Interrupt::SendOk)?;
// self.0.write_u16(socket.at(SocketRegister::LocalPort), 0)?;
// self.0.write_to(
// socket.at(SocketRegister::Mode),
// &[
// Protocol::UDP as u8, // Socket Mode Register
// SocketCommand::Open as u8, // Socket Command Register
// ],
// )?;
// let mask = (0x01 << socket.number());
// this.sockets |= mask;
// }
// /// Set up basic configuration of the W5500 chip
// pub fn update_operation_mode(
// &mut self,
// wol: OnWakeOnLan,
// ping: OnPingRequest,
// mode: ConnectionType,
// arp: ArpResponses,
// ) -> Result<(), TransferError<SpiError, ChipSelectError>> {
// let mut value = 0x00;
// if let OnWakeOnLan::InvokeInterrupt = wol {
// value |= (1 << 5);
// }
// if let OnPingRequest::Ignore = ping {
// value |= (1 << 4);
// }
// if let ConnectionType::PPoE = mode {
// value |= (1 << 3);
// }
// if let ArpResponses::DropAfterUse = arp {
// value |= (1 << 1);
// }
// self.write_to(Register::CommonRegister(0x00_00_u16), &[value])
// }
// /// Sets the IP address of the network gateway (router)
// pub fn set_gateway(
// &mut self,
// gateway: IpAddress,
// ) -> Result<(), TransferError<SpiError, ChipSelectError>> {
// self.write_to(Register::CommonRegister(0x00_01_u16), &gateway.address)
// }
// /// Sets the subnet on the network
// pub fn set_subnet(
// &mut self,
// subnet: IpAddress,
// ) -> Result<(), TransferError<SpiError, ChipSelectError>> {
// self.write_to(Register::CommonRegister(0x00_05_u16), &subnet.address)
// }
// /// Sets the MAC address of the W5500 device on the network
// pub fn set_mac(
// &mut self,
// mac: MacAddress,
// ) -> Result<(), TransferError<SpiError, ChipSelectError>> {
// self.write_to(Register::CommonRegister(0x00_09_u16), &mac.address)
// }
// /// Sets the IP address of the W5500 device on network. Must be within the range permitted by the gateway
// pub fn set_ip(
// &mut self,
// ip: IpAddress,
// ) -> Result<(), TransferError<SpiError, ChipSelectError>> {
// self.write_to(Register::CommonRegister(0x00_0F_u16), &ip.address)
// }
// /// Reads 4 bytesfrom any register location and returns the value as an IP address
// pub fn read_ip(
// &mut self,
// register: Register,
// ) -> Result<IpAddress, TransferError<SpiError, ChipSelectError>> {
// let mut ip = IpAddress::default();
// self.read_from(register, &mut ip.address)?;
// Ok(ip)
// }
// /// This is unsafe because it cannot set taken sockets back to be uninitialized
// /// It assumes, none of the old sockets will used anymore. Otherwise that socket
// /// will have undefined behavior.
// pub unsafe fn reset(&mut self) -> Result<(), TransferError<SpiError, ChipSelectError>> {
// self.write_to(
// Register::CommonRegister(0x00_00_u16),
// &[
// 0b1000_0000, // Mode Register (force reset)
// ],
// )?;
// self.0.sockets = 0xFF;
// Ok(())
// }
// /// TODO document
// fn is_interrupt_set(
// &mut self,
// socket: Socket,
// interrupt: Interrupt,
// ) -> Result<bool, TransferError<SpiError, ChipSelectError>> {
// let mut state = [0u8; 1];
// self.read_from(socket.at(SocketRegister::Interrupt), &mut state)?;
// Ok(state[0] & interrupt as u8 != 0)
// }
// /// TODO document
// pub fn reset_interrupt(
// &mut self,
// socket: Socket,
// interrupt: Interrupt,
// ) -> Result<(), TransferError<SpiError, ChipSelectError>> {
// self.write_to(socket.at(SocketRegister::Interrupt), &[interrupt as u8])
// }
// /// Reads one byte from any register address as a u8
// fn read_u8(
// &mut self,
// register: Register,
// ) -> Result<u8, TransferError<SpiError, ChipSelectError>> {
// let mut buffer = [0u8; 1];
// self.read_from(register, &mut buffer)?;
// Ok(buffer[0])
// }
// /// Reads two bytes from any register address and returns as a u16
// fn read_u16(
// &mut self,
// register: Register,
// ) -> Result<u16, TransferError<SpiError, ChipSelectError>> {
// let mut buffer = [0u8; 2];
// self.read_from(register, &mut buffer)?;
// Ok(BigEndian::read_u16(&buffer))
// }
// /// Reads enough bytes from any register address to fill the `target` u8 slice
// fn read_from(
// &mut self,
// register: Register,
// target: &mut [u8],
// ) -> Result<(), TransferError<SpiError, ChipSelectError>> {
// self.chip_select()
// .map_err(|error| -> TransferError<SpiError, ChipSelectError> {
// TransferError::ChipSelectError(error)
// })?;
// let mut request = [
// 0_u8,
// 0_u8,
// register.control_byte() | COMMAND_READ | VARIABLE_DATA_LENGTH,
// ];
// BigEndian::write_u16(&mut request[..2], register.address());
// let result = self
// .write_bytes(&request)
// .and_then(|_| self.read_bytes(target));
// self.chip_deselect()
// .map_err(|error| -> TransferError<SpiError, ChipSelectError> {
// TransferError::ChipSelectError(error)
// })?;
// result.map_err(|error| TransferError::SpiError(error))
// }
// /// Reads enough bytes over SPI to fill the `target` u8 slice
// fn read_bytes(&mut self, bytes: &mut [u8]) -> Result<(), SpiError> {
// for byte in bytes {
// *byte = self.read()?;
// }
// Ok(())
// }
// /// Reads a single byte over SPI by writing a zero and reading the response
// fn read(&mut self) -> Result<u8, SpiError> {
// block!(self.1.send(0x00))?;
// block!(self.1.read())
// }
// /// Write a single u8 byte to any register address
// fn write_u8(
// &mut self,
// register: Register,
// value: u8,
// ) -> Result<(), TransferError<SpiError, ChipSelectError>> {
// self.write_to(register, &[value])
// }
// /// Write a u16 as two bytes o any register address
// fn write_u16(
// &mut self,
// register: Register,
// value: u16,
// ) -> Result<(), TransferError<SpiError, ChipSelectError>> {
// let mut data = [0u8; 2];
// BigEndian::write_u16(&mut data, value);
// self.write_to(register, &data)
// }
// /// Write a slice of u8 bytes to any register address
// fn write_to(
// &mut self,
// register: Register,
// data: &[u8],
// ) -> Result<(), TransferError<SpiError, ChipSelectError>> {
// self.chip_select()
// .map_err(|error| -> TransferError<SpiError, ChipSelectError> {
// TransferError::ChipSelectError(error)
// })?;
// let mut request = [
// 0_u8,
// 0_u8,
// register.control_byte() | COMMAND_WRITE | VARIABLE_DATA_LENGTH,
// ];
// BigEndian::write_u16(&mut request[..2], register.address());
// let result = self
// .write_bytes(&request)
// .and_then(|_| self.write_bytes(data));
// self.chip_deselect()
// .map_err(|error| -> TransferError<SpiError, ChipSelectError> {
// TransferError::ChipSelectError(error)
// })?;
// result.map_err(|error| TransferError::SpiError(error))
// }
// /// Write a slice of u8 bytes over SPI
// fn write_bytes(&mut self, bytes: &[u8]) -> Result<(), SpiError> {
// for b in bytes {
// self.write(*b)?;
// }
// Ok(())
// }
// /// Write a single byte over SPI
// fn write(&mut self, byte: u8) -> Result<(), SpiError> {
// block!(self.1.send(byte))?;
// block!(self.1.read())?;
// Ok(())
// }
// /// Begin a SPI frame by setting the CS signal to low
// fn chip_select(&mut self) -> Result<(), ChipSelectError> {
// self.0.chip_select.set_low()
// }
// /// End a SPI frame by setting the CS signal to high
// fn chip_deselect(&mut self) -> Result<(), ChipSelectError> {
// self.0.chip_select.set_high()
// }
// }
// pub trait IntoUdpSocket<SpiError> {
// fn try_into_udp_server_socket(self, port: u16) -> Result<UdpSocket, SpiError>
// where
// Self: Sized;
// }
// impl<ChipSelect: OutputPin, Spi: FullDuplex<u8>> IntoUdpSocket<UninitializedSocket>
// for (
// &mut ActiveW5500<'_, '_, '_, ChipSelect, Spi>,
// UninitializedSocket,
// )
// {
// /// Initialize a socket to operate in UDP mode
// fn try_into_udp_server_socket(self, port: u16) -> Result<UdpSocket, UninitializedSocket> {
// let socket = (self.1).0;
// (|| {
// self.0.reset_interrupt(socket, Interrupt::SendOk)?;
// self.0
// .write_u16(socket.at(SocketRegister::LocalPort), port)?;
// self.0.write_to(
// socket.at(SocketRegister::Mode),
// &[
// Protocol::UDP as u8, // Socket Mode Register
// SocketCommand::Open as u8, // Socket Command Register
// ],
// )?;
// Ok(UdpSocket(socket))
// })()
// .map_err(|_: TransferError<Spi::Error, ChipSelect::Error>| UninitializedSocket(socket))
// }
// }
// /// UDP trait that can send and receive UDP packets
// pub trait Udp {
// type Error;
// fn receive(
// &mut self,
// target_buffer: &mut [u8],
// ) -> Result<Option<(IpAddress, u16, usize)>, Self::Error>;
// fn blocking_send(
// &mut self,
// host: &IpAddress,
// host_port: u16,
// data: &[u8],
// ) -> Result<(), Self::Error>;
// }
// impl<ChipSelect: OutputPin, Spi: FullDuplex<u8>> Udp
// for (&mut ActiveW5500<'_, '_, '_, ChipSelect, Spi>, &UdpSocket)
// {
// type Error = TransferError<Spi::Error, ChipSelect::Error>;
// /// Returns a UDP packet if one is available. Will return `None` if no UDP packets are in the socket's buffer
// fn receive(
// &mut self,
// destination: &mut [u8],
// ) -> Result<Option<(IpAddress, u16, usize)>, Self::Error> {
// let (w5500, UdpSocket(socket)) = self;
// if w5500.read_u8(socket.at(SocketRegister::InterruptMask))? & 0x04 == 0 {
// return Ok(None);
// }
// let receive_size = loop {
// let s0 = w5500.read_u16(socket.at(SocketRegister::RxReceivedSize))?;
// let s1 = w5500.read_u16(socket.at(SocketRegister::RxReceivedSize))?;
// if s0 == s1 {
// break s0 as usize;
// }
// };
// if receive_size >= 8 {
// let read_pointer = w5500.read_u16(socket.at(SocketRegister::RxReadPointer))?;
// // |<-- read_pointer read_pointer + received_size -->|
// // |Destination IP Address | Destination Port | Byte Size of DATA | Actual DATA ... |
// // | --- 4 Bytes --- | --- 2 Bytes --- | --- 2 Bytes --- | .... |
// let ip = w5500.read_ip(socket.rx_register_at(read_pointer))?;
// let port = w5500.read_u16(socket.rx_register_at(read_pointer + 4))?;
// let data_length = destination
// .len()
// .min(w5500.read_u16(socket.rx_register_at(read_pointer + 6))? as usize);
// w5500.read_from(
// socket.rx_register_at(read_pointer + 8),
// &mut destination[..data_length],
// )?;
// // reset
// w5500.write_u16(
// socket.at(SocketRegister::RxReadPointer),
// read_pointer + receive_size as u16,
// )?;
// w5500.write_u8(
// socket.at(SocketRegister::Command),
// SocketCommand::Recv as u8,
// )?;
// Ok(Some((ip, port, data_length)))
// } else {
// Ok(None)
// }
// }
// /// Sends a UDP packet to the specified IP and port, and blocks until it is sent
// fn blocking_send(
// &mut self,
// host: &IpAddress,
// host_port: u16,
// data: &[u8],
// ) -> Result<(), Self::Error> {
// let (w5500, UdpSocket(socket)) = self;
// {
// let local_port = w5500.read_u16(socket.at(SocketRegister::LocalPort))?;
// let local_port = local_port.to_be_bytes();
// let host_port = host_port.to_be_bytes();
// w5500.write_to(
// socket.at(SocketRegister::LocalPort),
// &[
// local_port[0],
// local_port[1], // local port u16
// 0x00,
// 0x00,
// 0x00,
// 0x00,
// 0x00,
// 0x00, // destination mac
// host.address[0],
// host.address[1],
// host.address[2],
// host.address[3], // target IP
// host_port[0],
// host_port[1], // destination port (5354)
// ],
// )?;
// }
// let data_length = data.len() as u16;
// {
// let data_length = data_length.to_be_bytes();
// // TODO why write [0x00, 0x00] at TxReadPointer at all?
// // TODO Is TxWritePointer not sufficient enough?
// w5500.write_to(
// socket.at(SocketRegister::TxReadPointer),
// &[0x00, 0x00, data_length[0], data_length[1]],
// );
// }
// w5500.write_to(
// socket.tx_register_at(0x00_00),
// &data[..data_length as usize],
// )?;
// w5500.write_to(
// socket.at(SocketRegister::Command),
// &[SocketCommand::Send as u8],
// )?;
// for _ in 0..0xFFFF {
// // wait until sent
// if w5500.is_interrupt_set(*socket, Interrupt::SendOk)? {
// w5500.reset_interrupt(*socket, Interrupt::SendOk)?;
// break;
// }
// }
// // restore listen state
// w5500.write_to(
// socket.at(SocketRegister::Mode),
// &[
// Protocol::UDP as u8, // Socket Mode Register
// SocketCommand::Open as u8, // Socket Command Register
// ],
// )?;
// Ok(())
// }
// }
// /// Offset addresses in each socket register
// #[repr(u8)]
// #[derive(Copy, Clone, PartialEq, Debug)]
// pub enum SocketRegister {
// Mode = 0x0000,
// Command = 0x0001,
// Interrupt = 0x0002,
// Status = 0x0003,
// LocalPort = 0x0004,
// DestinationMac = 0x0006,
// DestinationIp = 0x000C,
// DestinationPort = 0x0010,
// MaxSegmentSize = 0x0012,
// // Reserved 0x0014
// TypeOfService = 0x0015,
// TimeToLive = 0x0016,
// // Reserved 0x0017 - 0x001D
// ReceiveBuffer = 0x001E,
// TransmitBuffer = 0x001F,
// TxFreeSize = 0x0020,
// TxReadPointer = 0x0022,
// TxWritePointer = 0x0024,
// RxReceivedSize = 0x0026,
// RxReadPointer = 0x0028,
// RxWritePointer = 0x002A,
// InterruptMask = 0x002C,
// FragmentOffset = 0x002D,
// KeepAliveTimer = 0x002F,
// // Reserved 0x0030 - 0xFFFF
// }
// /// Interrupt state bits
// #[repr(u8)]
// #[derive(Copy, Clone, PartialEq, Debug)]
// pub enum Interrupt {
// SendOk = 1 << 4,
// Timeout = 1 << 3,
// Received = 1 << 2,
// Disconnected = 1 << 1,
// Connected = 1, // 1 << 0
// }
// /// Register protocol mode bits
// #[repr(u8)]
// #[derive(Copy, Clone, PartialEq, Debug)]
// pub enum Protocol {
// TCP = 0b0001,
// UDP = 0b0010,
// MACRAW = 0b0100,
// }
// /// Bits for socket commands
// #[repr(u8)]
// #[derive(Copy, Clone, PartialEq, Debug)]
// pub enum SocketCommand {
// Open = 0x01,
// Listen = 0x02,
// Connect = 0x04,
// Disconnect = 0x08,
// Close = 0x10,
// Send = 0x20,
// SendMac = 0x21,
// SendKeep = 0x22,
// Recv = 0x40,
// }
// /// Identifiers for each socket on the W5500
// #[derive(Copy, Clone, PartialEq, PartialOrd, Debug)]
// pub enum Socket {
// Socket0,
// Socket1,
// Socket2,
// Socket3,
// Socket4,
// Socket5,
// Socket6,
// Socket7,
// }
// impl Socket {
// /// Gets the number of any given socket
// pub fn number(self) -> usize {
// match self {
// Socket::Socket0 => 0,
// Socket::Socket1 => 1,
// Socket::Socket2 => 2,
// Socket::Socket3 => 3,
// Socket::Socket4 => 4,
// Socket::Socket5 => 5,
// Socket::Socket6 => 6,
// Socket::Socket7 => 7,
// }
// }
// /// Returns the register address for a socket instance's TX
// fn tx_register_at(self, address: u16) -> Register {
// match self {
// Socket::Socket0 => Register::Socket0TxBuffer(address),
// Socket::Socket1 => Register::Socket1TxBuffer(address),
// Socket::Socket2 => Register::Socket2TxBuffer(address),
// Socket::Socket3 => Register::Socket3TxBuffer(address),
// Socket::Socket4 => Register::Socket4TxBuffer(address),
// Socket::Socket5 => Register::Socket5TxBuffer(address),
// Socket::Socket6 => Register::Socket6TxBuffer(address),
// Socket::Socket7 => Register::Socket7TxBuffer(address),
// }
// }
// /// Returns the register address for a socket instance's RX
// fn rx_register_at(self, address: u16) -> Register {
// match self {
// Socket::Socket0 => Register::Socket0RxBuffer(address),
// Socket::Socket1 => Register::Socket1RxBuffer(address),
// Socket::Socket2 => Register::Socket2RxBuffer(address),
// Socket::Socket3 => Register::Socket3RxBuffer(address),
// Socket::Socket4 => Register::Socket4RxBuffer(address),
// Socket::Socket5 => Register::Socket5RxBuffer(address),
// Socket::Socket6 => Register::Socket6RxBuffer(address),
// Socket::Socket7 => Register::Socket7RxBuffer(address),
// }
// }
// /// Returns the register address for a socket instance's register
// fn register_at(self, address: u16) -> Register {
// match self {
// Socket::Socket0 => Register::Socket0Register(address),
// Socket::Socket1 => Register::Socket1Register(address),
// Socket::Socket2 => Register::Socket2Register(address),
// Socket::Socket3 => Register::Socket3Register(address),
// Socket::Socket4 => Register::Socket4Register(address),
// Socket::Socket5 => Register::Socket5Register(address),
// Socket::Socket6 => Register::Socket6Register(address),
// Socket::Socket7 => Register::Socket7Register(address),
// }
// }
// fn at(self, register: SocketRegister) -> Register {
// self.register_at(register as u16)
// }
// }
// /// Chip register names
// #[derive(Copy, Clone, PartialEq, Debug)]
// pub enum Register {
// CommonRegister(u16),
// Socket0Register(u16),
// Socket0TxBuffer(u16),
// Socket0RxBuffer(u16),
// Socket1Register(u16),
// Socket1TxBuffer(u16),
// Socket1RxBuffer(u16),
// Socket2Register(u16),
// Socket2TxBuffer(u16),
// Socket2RxBuffer(u16),
// Socket3Register(u16),
// Socket3TxBuffer(u16),
// Socket3RxBuffer(u16),
// Socket4Register(u16),
// Socket4TxBuffer(u16),
// Socket4RxBuffer(u16),
// Socket5Register(u16),
// Socket5TxBuffer(u16),
// Socket5RxBuffer(u16),
// Socket6Register(u16),
// Socket6TxBuffer(u16),
// Socket6RxBuffer(u16),
// Socket7Register(u16),
// Socket7TxBuffer(u16),
// Socket7RxBuffer(u16),
// }
// impl Register {
// /// Gets the control bits to identify any given register
// fn control_byte(self) -> u8 {
// #[allow(clippy::inconsistent_digit_grouping)]
// match self {
// Register::CommonRegister(_) => 0b00000_000,
// Register::Socket0Register(_) => 0b00001_000,
// Register::Socket0TxBuffer(_) => 0b00010_000,
// Register::Socket0RxBuffer(_) => 0b00011_000,
// Register::Socket1Register(_) => 0b00101_000,
// Register::Socket1TxBuffer(_) => 0b00110_000,
// Register::Socket1RxBuffer(_) => 0b00111_000,
// Register::Socket2Register(_) => 0b01001_000,
// Register::Socket2TxBuffer(_) => 0b01010_000,
// Register::Socket2RxBuffer(_) => 0b01011_000,
// Register::Socket3Register(_) => 0b01101_000,
// Register::Socket3TxBuffer(_) => 0b01110_000,
// Register::Socket3RxBuffer(_) => 0b01111_000,
// Register::Socket4Register(_) => 0b10001_000,
// Register::Socket4TxBuffer(_) => 0b10010_000,
// Register::Socket4RxBuffer(_) => 0b10011_000,
// Register::Socket5Register(_) => 0b10101_000,
// Register::Socket5TxBuffer(_) => 0b10110_000,
// Register::Socket5RxBuffer(_) => 0b10111_000,
// Register::Socket6Register(_) => 0b11001_000,
// Register::Socket6TxBuffer(_) => 0b11010_000,
// Register::Socket6RxBuffer(_) => 0b11011_000,
// Register::Socket7Register(_) => 0b11101_000,
// Register::Socket7TxBuffer(_) => 0b11110_000,
// Register::Socket7RxBuffer(_) => 0b11111_000,
// }
// }
// /// Returns the associated address as a u16
// fn address(self) -> u16 {
// match self {
// Register::CommonRegister(address) => address,
// Register::Socket0Register(address) => address,
// Register::Socket0TxBuffer(address) => address,
// Register::Socket0RxBuffer(address) => address,
// Register::Socket1Register(address) => address,
// Register::Socket1TxBuffer(address) => address,
// Register::Socket1RxBuffer(address) => address,
// Register::Socket2Register(address) => address,
// Register::Socket2TxBuffer(address) => address,
// Register::Socket2RxBuffer(address) => address,
// Register::Socket3Register(address) => address,
// Register::Socket3TxBuffer(address) => address,
// Register::Socket3RxBuffer(address) => address,
// Register::Socket4Register(address) => address,
// Register::Socket4TxBuffer(address) => address,
// Register::Socket4RxBuffer(address) => address,
// Register::Socket5Register(address) => address,
// Register::Socket5TxBuffer(address) => address,
// Register::Socket5RxBuffer(address) => address,
// Register::Socket6Register(address) => address,
// Register::Socket6TxBuffer(address) => address,
// Register::Socket6RxBuffer(address) => address,
// Register::Socket7Register(address) => address,
// Register::Socket7TxBuffer(address) => address,
// Register::Socket7RxBuffer(address) => address,
// }
// }
// }
pub mod bus;
mod inactive_w5500;
mod network;

View file

@ -1,7 +1,8 @@
use crate::bus::ActiveBus;
use crate::network::Network;
use crate::network::NetworkSettings;
use crate::{IpAddress, MacAddress};
use crate::MacAddress;
use embedded_nal::Ipv4Addr;
pub struct Manual {
is_setup: bool,
@ -10,7 +11,7 @@ pub struct Manual {
}
impl Manual {
pub fn new(mac: MacAddress, ip: IpAddress, gateway: IpAddress, subnet: IpAddress) -> Self {
pub fn new(mac: MacAddress, ip: Ipv4Addr, gateway: Ipv4Addr, subnet: Ipv4Addr) -> Self {
Self {
is_setup: false,
settings: NetworkSettings {

View file

@ -5,14 +5,25 @@ pub use self::dhcp::Dhcp;
pub use self::manual::Manual;
use crate::bus::ActiveBus;
use crate::register;
use crate::{IpAddress, MacAddress};
use crate::MacAddress;
use embedded_nal::Ipv4Addr;
#[derive(Default)]
pub struct NetworkSettings {
mac: MacAddress,
ip: IpAddress,
gateway: IpAddress,
subnet: IpAddress,
ip: Ipv4Addr,
gateway: Ipv4Addr,
subnet: Ipv4Addr,
}
impl Default for NetworkSettings {
fn default() -> Self {
Self {
mac: MacAddress::default(),
ip: Ipv4Addr::unspecified(),
gateway: Ipv4Addr::unspecified(),
subnet: Ipv4Addr::unspecified(),
}
}
}
pub trait Network {
@ -29,38 +40,23 @@ pub trait Network {
settings: &NetworkSettings,
) -> Result<(), SpiBus::Error> {
if settings.gateway != current.gateway {
let mut address = settings.gateway.address;
bus.transfer_frame(
register::COMMON,
register::common::GATEWAY,
true,
&mut address
)?;
let address = settings.gateway.octets();
bus.write_frame(register::COMMON, register::common::GATEWAY, &address)?;
current.gateway = settings.gateway;
}
if settings.subnet != current.subnet {
let mut address = settings.subnet.address;
bus.transfer_frame(
register::COMMON,
register::common::SUBNET_MASK,
true,
&mut address
)?;
let address = settings.subnet.octets();
bus.write_frame(register::COMMON, register::common::SUBNET_MASK, &address)?;
current.subnet = settings.subnet;
}
if settings.mac != current.mac {
let mut address = settings.mac.address;
bus.transfer_frame(
register::COMMON,
register::common::MAC,
true,
&mut address
)?;
bus.write_frame(register::COMMON, register::common::MAC, &mut address)?;
current.mac = settings.mac;
}
if settings.ip != current.ip {
let mut address = settings.ip.address;
bus.transfer_frame(register::COMMON, register::common::IP, true, &mut address)?;
let mut address = settings.ip.octets();
bus.write_frame(register::COMMON, register::common::IP, &mut address)?;
current.ip = settings.ip;
}
Ok(())

View file

@ -45,6 +45,7 @@ pub mod socketn {
#[repr(u8)]
pub enum Protocol {
Udp = 0b10u8,
Closed = 0u8,
}
pub const COMMAND: u16 = 0x01;
#[repr(u8)]

201
src/socket.rs Normal file
View file

@ -0,0 +1,201 @@
use crate::bus::ActiveBus;
use crate::register::socketn;
use embedded_nal::Ipv4Addr;
pub struct Socket {
pub index: u8,
register: u8,
tx_buffer: u8,
rx_buffer: u8,
}
impl Socket {
pub fn new(index: u8) -> Self {
/*
* Socket 0 is at address 0x01
* Socket 0 TX is at address 0x02
* Socket 0 RX is at address 0x03
* skip 0x04
* Socket 1 is at address 0x05
* Socket 1 TX is at address 0x06
* Socket 1 RX is at address 0x07
* ...
*/
let block = index * 4;
Socket {
index,
register: block + 1,
tx_buffer: block + 2,
rx_buffer: block + 3,
}
}
pub fn register(&self) -> u8 {
self.register
}
pub fn tx_buffer(&self) -> u8 {
self.tx_buffer
}
pub fn rx_buffer(&self) -> u8 {
self.rx_buffer
}
pub fn set_mode<SpiBus: ActiveBus>(
&self,
bus: &mut SpiBus,
mode: socketn::Protocol,
) -> Result<(), SpiBus::Error> {
let mut mode = [mode as u8];
bus.write_frame(self.register(), socketn::MODE, &mut mode)?;
Ok(())
}
pub fn reset_interrupt<SpiBus: ActiveBus>(
&self,
bus: &mut SpiBus,
code: socketn::Interrupt,
) -> Result<(), SpiBus::Error> {
let mut data = [code as u8];
bus.write_frame(self.register(), socketn::INTERRUPT, &mut data)?;
Ok(())
}
pub fn has_interrupt<SpiBus: ActiveBus>(
&self,
bus: &mut SpiBus,
code: socketn::Interrupt,
) -> Result<bool, SpiBus::Error> {
let mut data = [0u8];
bus.read_frame(self.register(), socketn::INTERRUPT, &mut data)?;
Ok(data[0] & code as u8 != 0)
}
pub fn set_source_port<SpiBus: ActiveBus>(
&self,
bus: &mut SpiBus,
port: u16,
) -> Result<(), SpiBus::Error> {
let mut data = port.to_be_bytes();
bus.write_frame(self.register(), socketn::SOURCE_PORT, &mut data)?;
Ok(())
}
pub fn set_destination_ip<SpiBus: ActiveBus>(
&self,
bus: &mut SpiBus,
ip: Ipv4Addr,
) -> Result<(), SpiBus::Error> {
let mut data = ip.octets();
bus.write_frame(self.register(), socketn::DESTINATION_IP, &mut data)?;
Ok(())
}
pub fn set_destination_port<SpiBus: ActiveBus>(
&self,
bus: &mut SpiBus,
port: u16,
) -> Result<(), SpiBus::Error> {
let mut data = port.to_be_bytes();
bus.write_frame(self.register(), socketn::DESTINATION_PORT, &mut data)?;
Ok(())
}
pub fn get_tx_read_pointer<SpiBus: ActiveBus>(
&self,
bus: &mut SpiBus,
) -> Result<u16, SpiBus::Error> {
let mut data = [0u8; 2];
bus.read_frame(self.register(), socketn::TX_DATA_READ_POINTER, &mut data)?;
Ok(u16::from_be_bytes(data))
}
pub fn set_tx_read_pointer<SpiBus: ActiveBus>(
&self,
bus: &mut SpiBus,
pointer: u16,
) -> Result<(), SpiBus::Error> {
let mut data = pointer.to_be_bytes();
bus.write_frame(self.register(), socketn::TX_DATA_READ_POINTER, &mut data)?;
Ok(())
}
pub fn get_tx_write_pointer<SpiBus: ActiveBus>(
&self,
bus: &mut SpiBus,
) -> Result<u16, SpiBus::Error> {
let mut data = [0u8; 2];
bus.read_frame(self.register(), socketn::TX_DATA_WRITE_POINTER, &mut data)?;
Ok(u16::from_be_bytes(data))
}
pub fn set_tx_write_pointer<SpiBus: ActiveBus>(
&self,
bus: &mut SpiBus,
pointer: u16,
) -> Result<(), SpiBus::Error> {
let mut data = pointer.to_be_bytes();
bus.write_frame(self.register(), socketn::TX_DATA_WRITE_POINTER, &mut data)?;
Ok(())
}
pub fn get_rx_read_pointer<SpiBus: ActiveBus>(
&self,
bus: &mut SpiBus,
) -> Result<u16, SpiBus::Error> {
let mut data = [0u8; 2];
bus.read_frame(self.register(), socketn::RX_DATA_READ_POINTER, &mut data)?;
Ok(u16::from_be_bytes(data))
}
pub fn set_rx_read_pointer<SpiBus: ActiveBus>(
&self,
bus: &mut SpiBus,
pointer: u16,
) -> Result<(), SpiBus::Error> {
let mut data = pointer.to_be_bytes();
bus.write_frame(self.register(), socketn::RX_DATA_READ_POINTER, &mut data)?;
Ok(())
}
pub fn set_interrupt_mask<SpiBus: ActiveBus>(
&self,
bus: &mut SpiBus,
mask: u8,
) -> Result<(), SpiBus::Error> {
let mut data = [mask];
bus.write_frame(self.register(), socketn::INTERRUPT_MASK, &mut data)?;
Ok(())
}
pub fn command<SpiBus: ActiveBus>(
&self,
bus: &mut SpiBus,
command: socketn::Command,
) -> Result<(), SpiBus::Error> {
let mut data = [command as u8];
bus.write_frame(self.register(), socketn::COMMAND, &mut data)?;
Ok(())
}
pub fn get_receive_size<SpiBus: ActiveBus>(
&self,
bus: &mut SpiBus,
) -> Result<u16, SpiBus::Error> {
loop {
// Section 4.2 of datasheet, Sn_TX_FSR address docs indicate that read must be repeated until two sequential reads are stable
let mut sample_0 = [0u8; 2];
bus.read_frame(self.register(), socketn::RECEIVED_SIZE, &mut sample_0)?;
let mut sample_1 = [0u8; 2];
bus.read_frame(self.register(), socketn::RECEIVED_SIZE, &mut sample_1)?;
if sample_0 == sample_1 && sample_0[0] >= 8 {
break Ok(u16::from_be_bytes(sample_0));
}
}
}
pub fn dump_register<SpiBus: ActiveBus>(&self, bus: &mut SpiBus) -> [u8; 0x30] {
let mut register = [0u8; 0x30];
bus.read_frame(self.register(), 0u16, &mut register);
register
}
}

View file

@ -1,331 +0,0 @@
use byteorder::{BigEndian, ByteOrder};
use crate::bus::ActiveBus;
use crate::register;
use crate::register::socketn;
use crate::IpAddress;
pub trait Socket {
fn register(&self) -> u8;
fn tx_buffer(&self) -> u8;
fn rx_buffer(&self) -> u8;
fn set_mode<SpiBus: ActiveBus>(
&self,
bus: &mut SpiBus,
mode: socketn::Protocol,
) -> Result<(), SpiBus::Error> {
let mut mode = [mode as u8];
bus.transfer_frame(self.register(), socketn::MODE, true, &mut mode)?;
Ok(())
}
fn reset_interrupt<SpiBus: ActiveBus>(
&self,
bus: &mut SpiBus,
code: socketn::Interrupt,
) -> Result<(), SpiBus::Error> {
let mut data = [code as u8];
bus.transfer_frame(self.register(), socketn::INTERRUPT, true, &mut data)?;
Ok(())
}
fn has_interrupt<SpiBus: ActiveBus>(
&self,
bus: &mut SpiBus,
code: socketn::Interrupt,
) -> Result<bool, SpiBus::Error> {
let mut data = [0u8];
bus.transfer_frame(self.register(), socketn::INTERRUPT, false, &mut data)?;
Ok(data[0] & code as u8 != 0)
}
fn set_source_port<SpiBus: ActiveBus>(
&self,
bus: &mut SpiBus,
port: u16,
) -> Result<(), SpiBus::Error> {
let mut data = [0u8; 2];
BigEndian::write_u16(&mut data, port);
bus.transfer_frame(self.register(), socketn::SOURCE_PORT, true, &mut data)?;
Ok(())
}
fn set_destination_ip<SpiBus: ActiveBus>(
&self,
bus: &mut SpiBus,
ip: IpAddress,
) -> Result<(), SpiBus::Error> {
let mut data = ip.address;
bus.transfer_frame(self.register(), socketn::DESTINATION_IP, true, &mut data)?;
Ok(())
}
fn set_destination_port<SpiBus: ActiveBus>(
&self,
bus: &mut SpiBus,
port: u16,
) -> Result<(), SpiBus::Error> {
let mut data = [0u8; 2];
BigEndian::write_u16(&mut data, port);
bus.transfer_frame(self.register(), socketn::DESTINATION_PORT, true, &mut data)?;
Ok(())
}
fn get_tx_read_pointer<SpiBus: ActiveBus>(
&self,
bus: &mut SpiBus,
) -> Result<u16, SpiBus::Error> {
let mut data = [0u8; 2];
bus.transfer_frame(
self.register(),
socketn::TX_DATA_READ_POINTER,
false,
&mut data
)?;
Ok(BigEndian::read_u16(&data))
}
fn set_tx_read_pointer<SpiBus: ActiveBus>(
&self,
bus: &mut SpiBus,
pointer: u16,
) -> Result<(), SpiBus::Error> {
let mut data = [0u8; 2];
BigEndian::write_u16(&mut data, pointer);
bus.transfer_frame(
self.register(),
socketn::TX_DATA_READ_POINTER,
true,
&mut data
)?;
Ok(())
}
fn get_tx_write_pointer<SpiBus: ActiveBus>(
&self,
bus: &mut SpiBus,
) -> Result<u16, SpiBus::Error> {
let mut data = [0u8; 2];
bus.transfer_frame(
self.register(),
socketn::TX_DATA_WRITE_POINTER,
false,
&mut data
)?;
Ok(BigEndian::read_u16(&data))
}
fn set_tx_write_pointer<SpiBus: ActiveBus>(
&self,
bus: &mut SpiBus,
pointer: u16,
) -> Result<(), SpiBus::Error> {
let mut data = [0u8; 2];
BigEndian::write_u16(&mut data, pointer);
bus.transfer_frame(
self.register(),
socketn::TX_DATA_WRITE_POINTER,
true,
&mut data
)?;
Ok(())
}
fn get_rx_read_pointer<SpiBus: ActiveBus>(
&self,
bus: &mut SpiBus,
) -> Result<u16, SpiBus::Error> {
let mut data = [0u8; 2];
bus.transfer_frame(
self.register(),
socketn::RX_DATA_READ_POINTER,
false,
&mut data
)?;
Ok(BigEndian::read_u16(&data))
}
fn set_rx_read_pointer<SpiBus: ActiveBus>(
&self,
bus: &mut SpiBus,
pointer: u16,
) -> Result<(), SpiBus::Error> {
let mut data = [0u8; 2];
BigEndian::write_u16(&mut data, pointer);
bus.transfer_frame(
self.register(),
socketn::RX_DATA_READ_POINTER,
true,
&mut data
)?;
Ok(())
}
fn set_interrupt_mask<SpiBus: ActiveBus>(
&self,
bus: &mut SpiBus,
mask: u8,
) -> Result<(), SpiBus::Error> {
let mut data = [mask];
bus.transfer_frame(
self.register(),
socketn::INTERRUPT_MASK,
true,
&mut data
)?;
Ok(())
}
fn command<SpiBus: ActiveBus>(
&self,
bus: &mut SpiBus,
command: socketn::Command,
) -> Result<(), SpiBus::Error> {
let mut data = [command as u8];
bus.transfer_frame(self.register(), socketn::COMMAND, true, &mut data)?;
Ok(())
}
fn get_receive_size<SpiBus: ActiveBus>(&self, bus: &mut SpiBus) -> Result<u16, SpiBus::Error> {
loop {
// Section 4.2 of datasheet, Sn_TX_FSR address docs indicate that read must be repeated until two sequential reads are stable
let mut sample_0 = [0u8; 2];
bus.transfer_frame(
self.register(),
socketn::RECEIVED_SIZE,
false,
&mut sample_0
)?;
let mut sample_1 = [0u8; 2];
bus.transfer_frame(
self.register(),
socketn::RECEIVED_SIZE,
false,
&mut sample_1
)?;
if sample_0 == sample_1 && sample_0[0] >= 8 {
break Ok(BigEndian::read_u16(&sample_0));
}
}
}
fn dump_register<SpiBus: ActiveBus>(&self, bus: &mut SpiBus) -> [u8; 0x30] {
let mut register = [0u8; 0x30];
bus.transfer_frame(
self.register(),
0u16,
false,
&mut register
);
register
}
}
pub type OwnedSockets = (
Socket0,
Socket1,
Socket2,
Socket3,
Socket4,
Socket5,
Socket6,
Socket7,
);
pub struct Socket0 {}
impl Socket for Socket0 {
fn register(&self) -> u8 {
register::SOCKET0
}
fn tx_buffer(&self) -> u8 {
register::SOCKET0_BUFFER_TX
}
fn rx_buffer(&self) -> u8 {
register::SOCKET0_BUFFER_RX
}
}
pub struct Socket1 {}
impl Socket for Socket1 {
fn register(&self) -> u8 {
register::SOCKET1
}
fn tx_buffer(&self) -> u8 {
register::SOCKET1_BUFFER_TX
}
fn rx_buffer(&self) -> u8 {
register::SOCKET1_BUFFER_RX
}
}
pub struct Socket2 {}
impl Socket for Socket2 {
fn register(&self) -> u8 {
register::SOCKET2
}
fn tx_buffer(&self) -> u8 {
register::SOCKET2_BUFFER_TX
}
fn rx_buffer(&self) -> u8 {
register::SOCKET2_BUFFER_RX
}
}
pub struct Socket3 {}
impl Socket for Socket3 {
fn register(&self) -> u8 {
register::SOCKET3
}
fn tx_buffer(&self) -> u8 {
register::SOCKET3_BUFFER_TX
}
fn rx_buffer(&self) -> u8 {
register::SOCKET3_BUFFER_RX
}
}
pub struct Socket4 {}
impl Socket for Socket4 {
fn register(&self) -> u8 {
register::SOCKET4
}
fn tx_buffer(&self) -> u8 {
register::SOCKET4_BUFFER_TX
}
fn rx_buffer(&self) -> u8 {
register::SOCKET4_BUFFER_RX
}
}
pub struct Socket5 {}
impl Socket for Socket5 {
fn register(&self) -> u8 {
register::SOCKET5
}
fn tx_buffer(&self) -> u8 {
register::SOCKET5_BUFFER_TX
}
fn rx_buffer(&self) -> u8 {
register::SOCKET5_BUFFER_RX
}
}
pub struct Socket6 {}
impl Socket for Socket6 {
fn register(&self) -> u8 {
register::SOCKET6
}
fn tx_buffer(&self) -> u8 {
register::SOCKET6_BUFFER_TX
}
fn rx_buffer(&self) -> u8 {
register::SOCKET6_BUFFER_RX
}
}
pub struct Socket7 {}
impl Socket for Socket7 {
fn register(&self) -> u8 {
register::SOCKET7
}
fn tx_buffer(&self) -> u8 {
register::SOCKET7_BUFFER_TX
}
fn rx_buffer(&self) -> u8 {
register::SOCKET7_BUFFER_RX
}
}

258
src/udp.rs Normal file
View file

@ -0,0 +1,258 @@
use crate::bus::ActiveBus;
use crate::network::Network;
use crate::register::socketn;
use crate::socket::Socket;
use crate::w5500::W5500;
use core::fmt::Debug;
use embedded_nal::{nb, IpAddr, Ipv4Addr, SocketAddr, SocketAddrV4, UdpServer, UdpClient};
pub struct UdpSocket {
socket: Socket,
}
impl UdpSocket {
pub fn new<SpiBus: ActiveBus>(
bus: &mut SpiBus,
socket: Socket,
local_port: u16,
) -> Result<Self, SpiBus::Error> {
socket.command(bus, socketn::Command::Close)?;
socket.reset_interrupt(bus, socketn::Interrupt::All)?;
socket.set_source_port(bus, local_port)?;
socket.set_mode(bus, socketn::Protocol::Udp)?;
socket.set_interrupt_mask(
bus,
socketn::Interrupt::SendOk as u8 & socketn::Interrupt::Timeout as u8,
)?;
socket.command(bus, socketn::Command::Open)?;
Ok(UdpSocket { socket })
}
fn set_destination<SpiBus: ActiveBus>(
&mut self,
bus: &mut SpiBus,
remote: SocketAddrV4,
) -> Result<(), UdpSocketError<SpiBus::Error>> {
self.socket.set_destination_ip(bus, *remote.ip())?;
self.socket.set_destination_port(bus, remote.port())?;
Ok(())
}
fn send<SpiBus: ActiveBus>(
&self,
bus: &mut SpiBus,
send_buffer: &[u8],
) -> NbResult<(), UdpSocketError<SpiBus::Error>> {
// TODO increase longevity by cycling through buffer, instead of always writing to 0
// TODO ensure write is currently possible
self.socket
.set_tx_read_pointer(bus, 0)
.and_then(|_| bus.write_frame(self.socket.tx_buffer(), 0, &send_buffer))
.and_then(|_| {
self.socket
.set_tx_write_pointer(bus, send_buffer.len() as u16)
})
.and_then(|_| self.socket.command(bus, socketn::Command::Send))?;
loop {
if self
.socket
.get_tx_read_pointer(bus)?
== self
.socket
.get_tx_write_pointer(bus)?
{
if self
.socket
.has_interrupt(bus, socketn::Interrupt::SendOk)?
{
self.socket
.reset_interrupt(bus, socketn::Interrupt::All)?;
return Ok(());
} else if self
.socket
.has_interrupt(bus, socketn::Interrupt::Timeout)?
{
self.socket
.reset_interrupt(bus, socketn::Interrupt::All)?;
return Err(NbError::Other(UdpSocketError::WriteTimeout));
}
}
}
}
fn send_to<SpiBus: ActiveBus>(
&mut self,
bus: &mut SpiBus,
remote: SocketAddrV4,
send_buffer: &[u8],
) -> NbResult<(), UdpSocketError<SpiBus::Error>> {
self.set_destination(bus, remote)?;
self.send(bus, send_buffer)
}
fn receive<SpiBus: ActiveBus>(
&mut self,
bus: &mut SpiBus,
receive_buffer: &mut [u8],
) -> NbResult<(usize, SocketAddr), UdpSocketError<SpiBus::Error>> {
if !self
.socket
.has_interrupt(bus, socketn::Interrupt::Receive)?
{
return Err(NbError::WouldBlock);
}
/*
* Packet frame, as described in W5200 docs sectino 5.2.2.1
* |<-- read_pointer read_pointer + received_size -->|
* | Destination IP Address | Destination Port | Byte Size of DATA | Actual DATA ... |
* | --- 4 Bytes --- | --- 2 Bytes --- | --- 2 Bytes --- | .... |
*/
// TODO loop until RX received size stops changing, or it's larger than
// receive_buffer.len()
let read_pointer = self
.socket
.get_rx_read_pointer(bus)?;
let mut header = [0u8; 8];
bus.read_frame(self.socket.rx_buffer(), read_pointer, &mut header)?;
let remote = SocketAddr::new(
IpAddr::V4(Ipv4Addr::new(header[0], header[1], header[2], header[3])),
u16::from_be_bytes([header[4], header[5]]),
);
let packet_size = u16::from_be_bytes([header[6], header[7]]).into();
let data_read_pointer = read_pointer + 8;
// TODO handle buffer overflow
bus.read_frame(
self.socket.rx_buffer(),
data_read_pointer,
&mut receive_buffer[0..packet_size],
)?;
let tx_write_pointer = self
.socket
.get_tx_write_pointer(bus)?;
self.socket
.set_rx_read_pointer(bus, tx_write_pointer)
.and_then(|_| self.socket.command(bus, socketn::Command::Receive))?;
Ok((packet_size.into(), remote))
}
fn close<SpiBus: ActiveBus>(
&self,
bus: &mut SpiBus,
) -> Result<(), UdpSocketError<SpiBus::Error>> {
self.socket.set_mode(bus, socketn::Protocol::Closed)?;
self.socket.command(bus, socketn::Command::Close)?;
Ok(())
}
}
#[derive(Debug)]
pub enum UdpSocketError<E: Debug> {
NoMoreSockets,
UnsupportedAddress,
Other(E),
WriteTimeout,
}
impl<E: Debug> From<E> for UdpSocketError<E> {
fn from(error: E) -> UdpSocketError<E> {
UdpSocketError::Other(error)
}
}
type NbResult<T, E> = Result<T, NbError<E>>;
enum NbError<E> {
Other(E),
WouldBlock,
}
impl<E: Debug> From<UdpSocketError<E>> for NbError<UdpSocketError<E>> {
fn from(error: UdpSocketError<E>) -> NbError<UdpSocketError<E>> {
NbError::Other(error)
}
}
impl<E: Debug> From<E> for NbError<UdpSocketError<E>> {
fn from(error: E) -> NbError<UdpSocketError<E>> {
NbError::Other(UdpSocketError::Other(error))
}
}
impl<E: Debug> From<NbError<E>> for nb::Error<E> {
fn from(error: NbError<E>) -> nb::Error<E> {
match error {
NbError::Other(e) => nb::Error::Other(e),
NbError::WouldBlock => nb::Error::WouldBlock,
}
}
}
impl<SpiBus, NetworkImpl> UdpClient for W5500<SpiBus, NetworkImpl>
where
SpiBus: ActiveBus,
NetworkImpl: Network,
{
type UdpSocket = UdpSocket;
type Error = UdpSocketError<SpiBus::Error>;
fn connect(&mut self, remote: SocketAddr) -> Result<Self::UdpSocket, Self::Error> {
if let SocketAddr::V4(remote) = remote {
if let Some(socket) = self.take_socket() {
// TODO find a random port
let mut udp_socket = UdpSocket::new(&mut self.bus, socket, 4000)?;
udp_socket.set_destination(&mut self.bus, remote)?;
Ok(udp_socket)
} else {
Err(Self::Error::NoMoreSockets)
}
} else {
Err(Self::Error::UnsupportedAddress)
}
}
fn send(&mut self, socket: &mut Self::UdpSocket, buffer: &[u8]) -> nb::Result<(), Self::Error> {
socket.send(&mut self.bus, buffer)?;
Ok(())
}
fn receive(
&mut self,
socket: &mut Self::UdpSocket,
buffer: &mut [u8],
) -> nb::Result<(usize, SocketAddr), Self::Error> {
Ok(socket.receive(&mut self.bus, buffer)?)
}
fn close(&mut self, socket: Self::UdpSocket) -> Result<(), Self::Error> {
socket.close(&mut self.bus)?;
self.release_socket(socket.socket);
Ok(())
}
}
impl<SpiBus, NetworkImpl> UdpServer for W5500<SpiBus, NetworkImpl>
where
SpiBus: ActiveBus,
NetworkImpl: Network,
{
fn bind(&mut self, local_port: u16) -> Result<Self::UdpSocket, Self::Error> {
if let Some(socket) = self.take_socket() {
Ok(UdpSocket::new(&mut self.bus, socket, local_port)?)
} else {
Err(Self::Error::NoMoreSockets)
}
}
fn send_to(
&mut self,
socket: &mut Self::UdpSocket,
remote: SocketAddr,
buffer: &[u8],
) -> nb::Result<(), Self::Error> {
if let SocketAddr::V4(remote) = remote {
socket.send_to(&mut self.bus, remote, buffer)?;
Ok(())
} else {
Err(nb::Error::Other(Self::Error::UnsupportedAddress))
}
}
}

View file

@ -1,25 +0,0 @@
use crate::bus::ActiveBus;
use crate::network::Network;
use crate::socket::Socket;
use crate::udp::UdpSocket;
use crate::w5500::W5500;
pub struct InactiveUdpSocket<SocketImpl: Socket> {
socket: SocketImpl,
}
impl<SocketImpl: Socket> InactiveUdpSocket<SocketImpl> {
pub fn new(socket: SocketImpl) -> Self {
InactiveUdpSocket { socket }
}
pub fn activate<SpiBus: ActiveBus, NetworkImpl: Network>(
self,
w5500: W5500<SpiBus, NetworkImpl>,
) -> UdpSocket<SpiBus, NetworkImpl, SocketImpl> {
UdpSocket {
w5500,
socket: self.socket,
}
}
}

View file

@ -1,93 +0,0 @@
use crate::bus::ActiveBus;
use crate::network::Network;
use crate::register::socketn;
use crate::socket::Socket;
use crate::udp::UdpSocket;
use crate::IpAddress;
use byteorder::{BigEndian, ByteOrder};
pub struct IncomingPacket<UdpSocket> {
udp_socket: UdpSocket,
address: IpAddress,
remote_port: u16,
read_pointer: u16,
write_pointer: u16,
}
impl<SpiBus: ActiveBus, NetworkImpl: Network, SocketImpl: Socket>
IncomingPacket<UdpSocket<SpiBus, NetworkImpl, SocketImpl>>
{
pub fn new(
mut udp_socket: UdpSocket<SpiBus, NetworkImpl, SocketImpl>,
) -> Result<Self, SpiBus::Error> {
let receive_size = udp_socket
.socket
.get_receive_size(&mut udp_socket.w5500.bus)?;
// Packet frame, as described in W5200 docs sectino 5.2.2.1
// |<-- read_pointer read_pointer + received_size -->|
// |Destination IP Address | Destination Port | Byte Size of DATA | Actual DATA ... |
// | --- 4 Bytes --- | --- 2 Bytes --- | --- 2 Bytes --- | .... |
let read_pointer = udp_socket
.socket
.get_rx_read_pointer(&mut udp_socket.w5500.bus)?;
let mut header = [0u8; 8];
udp_socket.w5500.bus.transfer_frame(
udp_socket.socket.rx_buffer(),
read_pointer,
false,
&mut header
)?;
Ok(Self {
udp_socket,
address: IpAddress::new(header[0], header[1], header[2], header[3]),
remote_port: BigEndian::read_u16(&header[4..5]),
read_pointer: read_pointer + 8,
write_pointer: read_pointer + receive_size,
})
}
pub fn get_remote_port(&self) -> u16 {
self.remote_port
}
pub fn get_address(&self) -> IpAddress {
self.address
}
// TODO add read_all method
pub fn done(mut self) -> Result<UdpSocket<SpiBus, NetworkImpl, SocketImpl>, SpiBus::Error> {
self.udp_socket
.socket
.set_rx_read_pointer(&mut self.udp_socket.w5500.bus, self.write_pointer)?;
self.udp_socket
.socket
.command(&mut self.udp_socket.w5500.bus, socketn::Command::Receive)?;
Ok(self.udp_socket)
}
}
impl<SpiBus: ActiveBus, NetworkImpl: Network, SocketImpl: Socket> Iterator
for IncomingPacket<UdpSocket<SpiBus, NetworkImpl, SocketImpl>>
{
type Item = Result<u8, SpiBus::Error>;
fn next(&mut self) -> Option<Self::Item> {
if self.read_pointer > self.write_pointer {
return None;
}
let mut buffer = [0u8];
let result = self.udp_socket.w5500.bus.transfer_frame(
self.udp_socket.socket.rx_buffer(),
self.read_pointer,
false,
&mut buffer
);
self.read_pointer += 1;
// TODO handle looping back?
match result {
Ok(_) => Some(Ok(buffer[0])),
Result::Err(error) => Some(Err(error)),
}
}
}

View file

@ -1,66 +0,0 @@
mod inactive_udp_socket;
mod incoming_packet;
mod outgoing_packet;
use crate::bus::ActiveBus;
use crate::network::Network;
use crate::register::socketn;
use crate::socket::Socket;
use crate::udp::inactive_udp_socket::InactiveUdpSocket;
use crate::udp::incoming_packet::IncomingPacket;
use crate::udp::outgoing_packet::OutgoingPacket;
use crate::w5500::W5500;
use crate::IpAddress;
pub struct UdpSocket<SpiBus: ActiveBus, NetworkImpl: Network, SocketImpl: Socket> {
w5500: W5500<SpiBus, NetworkImpl>,
socket: SocketImpl,
}
impl<SpiBus: ActiveBus, NetworkImpl: Network, SocketImpl: Socket>
UdpSocket<SpiBus, NetworkImpl, SocketImpl>
{
pub fn new(
port: u16,
mut w5500: W5500<SpiBus, NetworkImpl>,
socket: SocketImpl,
) -> Result<Self, SpiBus::Error> {
socket.command(&mut w5500.bus, socketn::Command::Close)?;
socket.reset_interrupt(&mut w5500.bus, socketn::Interrupt::All)?;
socket.set_source_port(&mut w5500.bus, port)?;
socket.set_mode(&mut w5500.bus, socketn::Protocol::Udp)?;
socket.command(&mut w5500.bus, socketn::Command::Open)?;
Ok(UdpSocket { w5500, socket })
}
pub fn dump_register(&mut self) -> [u8; 0x30] {
self.socket.dump_register(&mut self.w5500.bus)
}
/// Returns a UDP packet if one is available. Will return `None` if no UDP packets are in the socket's buffer
pub fn receive(mut self) -> Result<Option<IncomingPacket<Self>>, SpiBus::Error> {
if !self
.socket
.has_interrupt(&mut self.w5500.bus, socketn::Interrupt::Receive)?
{
Ok(None)
} else {
Ok(Some(IncomingPacket::new(self)?))
}
}
/// Sends a UDP packet to the specified IP and port, and blocks until it is sent
pub fn send(
self,
host: IpAddress,
remote_port: u16,
) -> Result<OutgoingPacket<Self>, SpiBus::Error> {
Ok(OutgoingPacket::new(self, host, remote_port)?)
}
pub fn deactivate(self) -> (InactiveUdpSocket<SocketImpl>, W5500<SpiBus, NetworkImpl>) {
(InactiveUdpSocket::new(self.socket), self.w5500)
}
}

View file

@ -1,75 +0,0 @@
use crate::bus::ActiveBus;
use crate::network::Network;
use crate::register::socketn;
use crate::socket::Socket;
use crate::udp::UdpSocket;
use crate::IpAddress;
pub struct OutgoingPacket<UdpSocket> {
pub udp_socket: UdpSocket,
data_length: u16,
}
impl<SpiBus: ActiveBus, NetworkImpl: Network, SocketImpl: Socket>
OutgoingPacket<UdpSocket<SpiBus, NetworkImpl, SocketImpl>>
{
pub fn new(
mut udp_socket: UdpSocket<SpiBus, NetworkImpl, SocketImpl>,
host: IpAddress,
port: u16,
) -> Result<Self, SpiBus::Error> {
// TODO set interrupt mask to SendOk&Timeout
udp_socket
.socket
.set_destination_ip(&mut udp_socket.w5500.bus, host)?;
udp_socket
.socket
.set_destination_port(&mut udp_socket.w5500.bus, port)?;
udp_socket
.socket
.set_tx_read_pointer(&mut udp_socket.w5500.bus, 0)?;
Ok(Self {
udp_socket,
data_length: 0,
})
}
pub fn write(&mut self, mut data: &mut [u8]) -> Result<(), SpiBus::Error> {
self.udp_socket.w5500.bus.transfer_frame(
self.udp_socket.socket.tx_buffer(),
self.data_length,
true,
&mut data
)?;
self.data_length += data.len() as u16;
Ok(())
}
pub fn send(mut self) -> Result<UdpSocket<SpiBus, NetworkImpl, SocketImpl>, SpiBus::Error> {
self.udp_socket
.socket
.set_tx_write_pointer(&mut self.udp_socket.w5500.bus, self.data_length)?;
self.udp_socket
.socket
.command(&mut self.udp_socket.w5500.bus, socketn::Command::Send)?;
loop {
// TODO wait until TX pointers match first
// TODO check for Timeout interrupt
// wait until send is complete
if self
.udp_socket
.socket
.has_interrupt(&mut self.udp_socket.w5500.bus, socketn::Interrupt::SendOk)?
{
self.udp_socket
.socket
.reset_interrupt(&mut self.udp_socket.w5500.bus, socketn::Interrupt::SendOk)?;
break;
}
}
self.udp_socket
.socket
.command(&mut self.udp_socket.w5500.bus, socketn::Command::Open)?;
Ok(self.udp_socket)
}
}

View file

@ -1,11 +1,10 @@
use crate::network::{Dhcp, Manual, Network};
use crate::{IpAddress, MacAddress, Mode};
use crate::{MacAddress, Mode};
use bus::{ActiveBus, ActiveFourWire, ActiveThreeWire};
use embedded_hal::digital::v2::OutputPin;
use embedded_hal::spi::FullDuplex;
use embedded_nal::Ipv4Addr;
use register;
use socket::OwnedSockets;
use socket::{Socket0, Socket1, Socket2, Socket3, Socket4, Socket5, Socket6, Socket7};
use w5500::W5500;
pub struct UninitializedW5500<SpiBus: ActiveBus> {
@ -17,6 +16,7 @@ pub enum InitializeError<SpiError> {
SpiError(SpiError),
ChipNotConnected,
}
// TODO add From impl and remove map_errs
impl<SpiBus: ActiveBus> UninitializedW5500<SpiBus> {
pub fn new(bus: SpiBus) -> UninitializedW5500<SpiBus> {
@ -27,7 +27,7 @@ impl<SpiBus: ActiveBus> UninitializedW5500<SpiBus> {
self,
mac: MacAddress,
mode_options: Mode,
) -> Result<(W5500<SpiBus, Dhcp>, OwnedSockets), InitializeError<SpiBus::Error>> {
) -> Result<W5500<SpiBus, Dhcp>, InitializeError<SpiBus::Error>> {
let network = Dhcp::new(mac);
self.initialize_with_network(network, mode_options)
}
@ -35,23 +35,24 @@ impl<SpiBus: ActiveBus> UninitializedW5500<SpiBus> {
pub fn initialize_manual(
self,
mac: MacAddress,
ip: IpAddress,
ip: Ipv4Addr,
mode_options: Mode,
) -> Result<(W5500<SpiBus, Manual>, OwnedSockets), InitializeError<SpiBus::Error>> {
let mut gateway = ip;
gateway.address[3] = 1;
let subnet = IpAddress::new(255, 255, 255, 0);
) -> Result<W5500<SpiBus, Manual>, InitializeError<SpiBus::Error>> {
let mut ip_bytes = ip.octets();
ip_bytes[3] = 1;
let gateway = Ipv4Addr::from(ip_bytes);
let subnet = Ipv4Addr::new(255, 255, 255, 0);
self.initialize_advanced(mac, ip, gateway, subnet, mode_options)
}
pub fn initialize_advanced(
self,
mac: MacAddress,
ip: IpAddress,
gateway: IpAddress,
subnet: IpAddress,
ip: Ipv4Addr,
gateway: Ipv4Addr,
subnet: Ipv4Addr,
mode_options: Mode,
) -> Result<(W5500<SpiBus, Manual>, OwnedSockets), InitializeError<SpiBus::Error>> {
) -> Result<W5500<SpiBus, Manual>, InitializeError<SpiBus::Error>> {
let network = Manual::new(mac, ip, gateway, subnet);
self.initialize_with_network(network, mode_options)
}
@ -60,35 +61,21 @@ impl<SpiBus: ActiveBus> UninitializedW5500<SpiBus> {
mut self,
mut network: NetworkImpl,
mode_options: Mode,
) -> Result<(W5500<SpiBus, NetworkImpl>, OwnedSockets), InitializeError<SpiBus::Error>> {
) -> Result<W5500<SpiBus, NetworkImpl>, InitializeError<SpiBus::Error>> {
self.assert_chip_version(0x4)?;
// RESET
/*
let mut mode = [0b10000000];
self
.bus
.transfer_frame(register::COMMON, register::common::MODE, true, &mut mode)
self.bus
.write_frame(register::COMMON, register::common::MODE, &mut mode)
.map_err(|e| InitializeError::SpiError(e))?;
*/
self.set_mode(mode_options)
.map_err(|e| InitializeError::SpiError(e))?;
network
.refresh(&mut self.bus)
.map_err(|e| InitializeError::SpiError(e))?;
let sockets = (
Socket0 {},
Socket1 {},
Socket2 {},
Socket3 {},
Socket4 {},
Socket5 {},
Socket6 {},
Socket7 {},
);
Ok((W5500::new(self.bus, network), sockets))
Ok(W5500::new(self.bus, network))
}
fn assert_chip_version(
@ -96,13 +83,9 @@ impl<SpiBus: ActiveBus> UninitializedW5500<SpiBus> {
expected_version: u8,
) -> Result<(), InitializeError<SpiBus::Error>> {
let mut version = [0];
self.bus.transfer_frame(
register::COMMON,
register::common::VERSION,
false,
&mut version
)
.map_err(|e| InitializeError::SpiError(e))?;
self.bus
.read_frame(register::COMMON, register::common::VERSION, &mut version)
.map_err(|e| InitializeError::SpiError(e))?;
if version[0] != expected_version {
Err(InitializeError::ChipNotConnected)
} else {
@ -116,9 +99,8 @@ impl<SpiBus: ActiveBus> UninitializedW5500<SpiBus> {
mode[0] |= mode_options.on_ping_request as u8;
mode[0] |= mode_options.connection_type as u8;
mode[0] |= mode_options.arp_responses as u8;
self
.bus
.transfer_frame(register::COMMON, register::common::MODE, true, &mut mode)?;
self.bus
.write_frame(register::COMMON, register::common::MODE, &mut mode)?;
Ok(())
}
}

View file

@ -1,43 +1,68 @@
use crate::inactive_w5500::InactiveW5500;
use crate::uninitialized_w5500::UninitializedW5500;
use bit_field::BitArray;
use bus::{ActiveBus, ActiveFourWire, ActiveThreeWire, FourWire, ThreeWire};
use embedded_hal::digital::v2::OutputPin;
use embedded_hal::spi::FullDuplex;
use network::Network;
use register;
use socket::Socket;
use udp::UdpSocket;
pub struct W5500<SpiBus: ActiveBus, NetworkImpl: Network> {
pub bus: SpiBus,
network: NetworkImpl,
sockets: [u8; 1],
}
pub enum ResetError<E> {
SocketsNotReleased,
Other(E),
}
impl<E> From<E> for ResetError<E> {
fn from(error: E) -> ResetError<E> {
ResetError::Other(error)
}
}
impl<SpiBus: ActiveBus, NetworkImpl: Network> W5500<SpiBus, NetworkImpl> {
pub fn new(bus: SpiBus, network: NetworkImpl) -> Self {
W5500 { bus, network }
W5500 {
bus,
network,
sockets: [0b11111111],
}
}
pub fn reset(mut self) -> Result<UninitializedW5500<SpiBus>, SpiBus::Error> {
self.clear_mode()?;
Ok(UninitializedW5500::new(self.bus))
pub fn reset(mut self) -> Result<UninitializedW5500<SpiBus>, ResetError<SpiBus::Error>> {
if self.sockets != [0b11111111] {
Err(ResetError::SocketsNotReleased)
} else {
self.clear_mode()?;
Ok(UninitializedW5500::new(self.bus))
}
}
fn clear_mode(&mut self) -> Result<(), SpiBus::Error> {
// reset bit
let mut mode = [0b10000000];
self
.bus
.transfer_frame(register::COMMON, register::common::MODE, true, &mut mode)?;
self.bus
.write_frame(register::COMMON, register::common::MODE, &mut mode)?;
Ok(())
}
pub fn open_udp_socket<SocketImpl: Socket>(
self,
port: u16,
socket: SocketImpl,
) -> Result<UdpSocket<SpiBus, NetworkImpl, SocketImpl>, SpiBus::Error> {
UdpSocket::new(port, self, socket)
pub fn take_socket(&mut self) -> Option<Socket> {
for index in 0..8 {
if self.sockets.get_bit(index) {
self.sockets.set_bit(index, false);
return Some(Socket::new(index as u8));
}
}
None
}
pub fn release_socket(&mut self, socket: Socket) -> () {
self.sockets.set_bit(socket.index.into(), true);
}
pub fn release(self) -> (SpiBus, NetworkImpl) {