rust-rpxy/rpxy-lib/src/forwarder/cache/cache_main.rs
Jun Kurihara e259e0b588
refactor
2025-05-16 19:30:51 +09:00

507 lines
17 KiB
Rust

use super::cache_error::*;
use crate::{
globals::Globals,
hyper_ext::body::{BoxBody, ResponseBody, UnboundedStreamBody, full},
log::*,
};
use base64::{Engine as _, engine::general_purpose};
use bytes::{Buf, Bytes, BytesMut};
use futures::channel::mpsc;
use http::{Request, Response, Uri};
use http_body_util::{BodyExt, StreamBody};
use http_cache_semantics::CachePolicy;
use hyper::body::{Frame, Incoming};
use lru::LruCache;
use sha2::{Digest, Sha256};
use std::{
path::{Path, PathBuf},
sync::{
Arc, Mutex,
atomic::{AtomicUsize, Ordering},
},
time::SystemTime,
};
use tokio::{
fs::{self, File},
io::{AsyncReadExt, AsyncWriteExt},
sync::RwLock,
};
/* ---------------------------------------------- */
#[derive(Clone, Debug)]
/// Cache main manager
pub(crate) struct RpxyCache {
/// Inner lru cache manager storing http message caching policy
inner: LruCacheManager,
/// Managing cache file objects through RwLock's lock mechanism for file lock
file_store: FileStore,
/// Async runtime
runtime_handle: tokio::runtime::Handle,
/// Maximum size of each cache file object
max_each_size: usize,
/// Maximum size of cache object on memory
max_each_size_on_memory: usize,
/// Cache directory path
cache_dir: PathBuf,
}
impl RpxyCache {
#[allow(unused)]
/// Generate cache storage
pub(crate) async fn new(globals: &Globals) -> Option<Self> {
if !globals.proxy_config.cache_enabled {
return None;
}
let cache_dir = globals.proxy_config.cache_dir.as_ref().unwrap();
let file_store = FileStore::new(&globals.runtime_handle).await;
let inner = LruCacheManager::new(globals.proxy_config.cache_max_entry);
let max_each_size = globals.proxy_config.cache_max_each_size;
let mut max_each_size_on_memory = globals.proxy_config.cache_max_each_size_on_memory;
if max_each_size < max_each_size_on_memory {
warn!("Maximum size of on memory cache per entry must be smaller than or equal to the maximum of each file cache");
max_each_size_on_memory = max_each_size;
}
if let Err(e) = fs::remove_dir_all(cache_dir).await {
warn!("Failed to clean up the cache dir: {e}");
};
fs::create_dir_all(&cache_dir).await.unwrap();
Some(Self {
file_store,
inner,
runtime_handle: globals.runtime_handle.clone(),
max_each_size,
max_each_size_on_memory,
cache_dir: cache_dir.clone(),
})
}
/// Count cache entries
pub(crate) async fn count(&self) -> (usize, usize, usize) {
let total = self.inner.count();
let file = self.file_store.count().await;
let on_memory = total - file;
(total, on_memory, file)
}
/// Put response into the cache
pub(crate) async fn put(&self, uri: &hyper::Uri, mut body: Incoming, policy: &CachePolicy) -> CacheResult<UnboundedStreamBody> {
let cache_manager = self.inner.clone();
let mut file_store = self.file_store.clone();
let uri = uri.clone();
let policy_clone = policy.clone();
let max_each_size = self.max_each_size;
let max_each_size_on_memory = self.max_each_size_on_memory;
let cache_dir = self.cache_dir.clone();
let (body_tx, body_rx) = mpsc::unbounded::<Result<Frame<Bytes>, hyper::Error>>();
self.runtime_handle.spawn(async move {
let mut size = 0usize;
let mut buf = BytesMut::new();
loop {
let frame = match body.frame().await {
Some(frame) => frame,
None => {
debug!("Response body finished");
break;
}
};
let frame_size = frame.as_ref().map(|f| {
if f.is_data() {
f.data_ref().map(|bytes| bytes.remaining()).unwrap_or_default()
} else {
0
}
});
size += frame_size.unwrap_or_default();
// check size
if size > max_each_size {
warn!("Too large to cache");
return Err(CacheError::TooLargeToCache);
}
frame
.as_ref()
.map(|f| {
if f.is_data() {
let data_bytes = f.data_ref().unwrap().clone();
// debug!("cache data bytes of {} bytes", data_bytes.len());
// We do not use stream-type buffering since it needs to lock file during operation.
buf.extend(data_bytes.as_ref());
}
})
.map_err(|e| CacheError::FailedToCacheBytes(e.to_string()))?;
// send data to use response downstream
body_tx
.unbounded_send(frame)
.map_err(|e| CacheError::FailedToSendFrameToCache(e.to_string()))?;
}
let buf = buf.freeze();
// Calculate hash of the cached data, after all data is received.
// In-operation calculation is possible but it blocks sending data.
let mut hasher = Sha256::new();
hasher.update(buf.as_ref());
let hash_bytes = Bytes::copy_from_slice(hasher.finalize().as_ref());
trace!("Cached data: {} bytes, hash = {:?}", size, hash_bytes);
// Create cache object
let cache_key = derive_cache_key_from_uri(&uri);
let cache_object = CacheObject {
policy: policy_clone,
target: CacheFileOrOnMemory::build(&cache_dir, &uri, &buf, max_each_size_on_memory),
hash: hash_bytes,
};
if let Some((k, v)) = cache_manager.push(&cache_key, &cache_object)? {
if k != cache_key {
info!("Over the cache capacity. Evict least recent used entry");
if let CacheFileOrOnMemory::File(path) = v.target {
file_store.evict(&path).await;
}
}
}
// store cache object to file
if let CacheFileOrOnMemory::File(_) = cache_object.target {
file_store.create(&cache_object, &buf).await?;
}
Ok(()) as CacheResult<()>
});
let stream_body = StreamBody::new(body_rx);
Ok(stream_body)
}
/// Get cached response
pub(crate) async fn get<R>(&self, req: &Request<R>) -> Option<Response<ResponseBody>> {
trace!("Current cache status: (total, on-memory, file) = {:?}", self.count().await);
let cache_key = derive_cache_key_from_uri(req.uri());
// First check cache chance
let cached_object = self.inner.get(&cache_key).ok()??;
// Secondly check the cache freshness as an HTTP message
let now = SystemTime::now();
let http_cache_semantics::BeforeRequest::Fresh(res_parts) = cached_object.policy.before_request(req, now) else {
// Evict stale cache entry.
// This might be okay to keep as is since it would be updated later.
// However, there is no guarantee that newly got objects will be still cacheable.
// So, we have to evict stale cache entries and cache file objects if found.
debug!("Stale cache entry: {cache_key}");
let _evicted_entry = self.inner.evict(&cache_key);
// For cache file
if let CacheFileOrOnMemory::File(path) = &cached_object.target {
self.file_store.evict(&path).await;
}
return None;
};
// Finally retrieve the file/on-memory object
let response_body = match cached_object.target {
CacheFileOrOnMemory::File(path) => {
let stream_body = match self.file_store.read(path.clone(), &cached_object.hash).await {
Ok(s) => s,
Err(e) => {
warn!("Failed to read from file cache: {e}");
let _evicted_entry = self.inner.evict(&cache_key);
self.file_store.evict(path).await;
return None;
}
};
debug!("Cache hit from file: {cache_key}");
ResponseBody::Streamed(stream_body)
}
CacheFileOrOnMemory::OnMemory(object) => {
debug!("Cache hit from on memory: {cache_key}");
let mut hasher = Sha256::new();
hasher.update(object.as_ref());
let hash_bytes = Bytes::copy_from_slice(hasher.finalize().as_ref());
if hash_bytes != cached_object.hash {
warn!("Hash mismatched. Cache object is corrupted");
let _evicted_entry = self.inner.evict(&cache_key);
return None;
}
ResponseBody::Boxed(BoxBody::new(full(object)))
}
};
Some(Response::from_parts(res_parts, response_body))
}
}
/* ---------------------------------------------- */
#[derive(Debug, Clone)]
/// Cache file manager outer that is responsible to handle `RwLock`
struct FileStore {
/// Inner file store main object
inner: Arc<RwLock<FileStoreInner>>,
}
impl FileStore {
#[allow(unused)]
/// Build manager
async fn new(runtime_handle: &tokio::runtime::Handle) -> Self {
Self {
inner: Arc::new(RwLock::new(FileStoreInner::new(runtime_handle).await)),
}
}
/// Count file cache entries
async fn count(&self) -> usize {
let inner = self.inner.read().await;
inner.cnt
}
/// Create a temporary file cache
async fn create(&mut self, cache_object: &CacheObject, body_bytes: &Bytes) -> CacheResult<()> {
let mut inner = self.inner.write().await;
inner.create(cache_object, body_bytes).await
}
/// Evict a temporary file cache
async fn evict(&self, path: impl AsRef<Path>) {
// Acquire the write lock
let mut inner = self.inner.write().await;
if let Err(e) = inner.remove(path).await {
warn!("Eviction failed during file object removal: {:?}", e);
};
}
/// Read a temporary file cache
async fn read(&self, path: impl AsRef<Path> + Send + Sync + 'static, hash: &Bytes) -> CacheResult<UnboundedStreamBody> {
let inner = self.inner.read().await;
inner.read(path, hash).await
}
}
#[derive(Debug, Clone)]
/// Manager inner for cache on file system
struct FileStoreInner {
/// Counter of current cached files
cnt: usize,
/// Async runtime
runtime_handle: tokio::runtime::Handle,
}
impl FileStoreInner {
#[allow(unused)]
/// Build new cache file manager.
/// This first creates cache file dir if not exists, and cleans up the file inside the directory.
/// TODO: Persistent cache is really difficult. `sqlite` or something like that is needed.
async fn new(runtime_handle: &tokio::runtime::Handle) -> Self {
Self {
cnt: 0,
runtime_handle: runtime_handle.clone(),
}
}
/// Create a new temporary file cache
async fn create(&mut self, cache_object: &CacheObject, body_bytes: &Bytes) -> CacheResult<()> {
let cache_filepath = match cache_object.target {
CacheFileOrOnMemory::File(ref path) => path.clone(),
CacheFileOrOnMemory::OnMemory(_) => {
return Err(CacheError::InvalidCacheTarget);
}
};
let Ok(mut file) = File::create(&cache_filepath).await else {
return Err(CacheError::FailedToCreateFileCache);
};
let mut bytes_clone = body_bytes.clone();
while bytes_clone.has_remaining() {
if let Err(e) = file.write_buf(&mut bytes_clone).await {
error!("Failed to write file cache: {e}");
return Err(CacheError::FailedToWriteFileCache);
};
}
self.cnt += 1;
Ok(())
}
/// Retrieve a stored temporary file cache
async fn read(&self, path: impl AsRef<Path> + Send + Sync + 'static, hash: &Bytes) -> CacheResult<UnboundedStreamBody> {
let Ok(mut file) = File::open(&path).await else {
warn!("Cache file object cannot be opened");
return Err(CacheError::FailedToOpenCacheFile);
};
let hash_clone = hash.clone();
let mut self_clone = self.clone();
let (body_tx, body_rx) = mpsc::unbounded::<Result<Frame<Bytes>, hyper::Error>>();
self.runtime_handle.spawn(async move {
let mut hasher = Sha256::new();
let mut buf = BytesMut::new();
loop {
match file.read_buf(&mut buf).await {
Ok(0) => break,
Ok(_) => {
let bytes = buf.copy_to_bytes(buf.remaining());
hasher.update(bytes.as_ref());
body_tx
.unbounded_send(Ok(Frame::data(bytes)))
.map_err(|e| CacheError::FailedToSendFrameFromCache(e.to_string()))?
}
Err(_) => break,
};
}
let hash_bytes = Bytes::copy_from_slice(hasher.finalize().as_ref());
if hash_bytes != hash_clone {
warn!("Hash mismatched. Cache object is corrupted. Force to remove the cache file.");
// only file can be evicted
let _evicted_entry = self_clone.remove(&path).await;
return Err(CacheError::HashMismatchedInCacheFile);
}
Ok(()) as CacheResult<()>
});
let stream_body = StreamBody::new(body_rx);
Ok(stream_body)
}
/// Remove file
async fn remove(&mut self, path: impl AsRef<Path>) -> CacheResult<()> {
fs::remove_file(path.as_ref())
.await
.map_err(|e| CacheError::FailedToRemoveCacheFile(e.to_string()))?;
self.cnt -= 1;
debug!("Removed a cache file at {:?} (file count: {})", path.as_ref(), self.cnt);
Ok(())
}
}
/* ---------------------------------------------- */
#[derive(Clone, Debug)]
/// Cache target in hybrid manner of on-memory and file system
pub(crate) enum CacheFileOrOnMemory {
/// Pointer to the temporary cache file
File(PathBuf),
/// Cached body itself
OnMemory(Bytes),
}
impl CacheFileOrOnMemory {
/// Get cache object target
fn build(cache_dir: &Path, uri: &Uri, object: &Bytes, max_each_size_on_memory: usize) -> Self {
if object.len() > max_each_size_on_memory {
let cache_filename = derive_filename_from_uri(uri);
let cache_filepath = cache_dir.join(cache_filename);
CacheFileOrOnMemory::File(cache_filepath)
} else {
CacheFileOrOnMemory::OnMemory(object.clone())
}
}
}
#[derive(Clone, Debug)]
/// Cache object definition
struct CacheObject {
/// Cache policy to determine if the stored cache can be used as a response to a new incoming request
policy: CachePolicy,
/// Cache target: on-memory object or temporary file
target: CacheFileOrOnMemory,
/// SHA256 hash of target to strongly bind the cache metadata (this object) and file target
hash: Bytes,
}
/* ---------------------------------------------- */
#[derive(Debug, Clone)]
/// Lru cache manager that is responsible to handle `Mutex` as an outer of `LruCache`
struct LruCacheManager {
/// Inner lru cache manager main object
inner: Arc<Mutex<LruCache<String, CacheObject>>>, // TODO: keyはstring urlでいいのか疑問。全requestに対してcheckすることになりそう
/// Counter of current cached object (total)
cnt: Arc<AtomicUsize>,
}
impl LruCacheManager {
#[allow(unused)]
/// Build LruCache
fn new(cache_max_entry: usize) -> Self {
Self {
inner: Arc::new(Mutex::new(LruCache::new(
std::num::NonZeroUsize::new(cache_max_entry).unwrap(),
))),
cnt: Default::default(),
}
}
/// Count entries
fn count(&self) -> usize {
self.cnt.load(Ordering::Relaxed)
}
/// Evict an entry
fn evict(&self, cache_key: &str) -> Option<(String, CacheObject)> {
let Ok(mut lock) = self.inner.lock() else {
error!("Mutex can't be locked to evict a cache entry");
return None;
};
let res = lock.pop_entry(cache_key);
// This may be inconsistent with the actual number of entries
self.cnt.store(lock.len(), Ordering::Relaxed);
res
}
/// Push an entry
fn push(&self, cache_key: &str, cache_object: &CacheObject) -> CacheResult<Option<(String, CacheObject)>> {
let mut lock = self.inner.lock().map_err(|_| {
error!("Failed to acquire mutex lock for writing cache entry");
CacheError::FailedToAcquiredMutexLockForCache
})?;
let res = Ok(lock.push(cache_key.to_string(), cache_object.clone()));
// This may be inconsistent with the actual number of entries
self.cnt.store(lock.len(), Ordering::Relaxed);
res
}
/// Get an entry
fn get(&self, cache_key: &str) -> CacheResult<Option<CacheObject>> {
let mut lock = self.inner.lock().map_err(|_| {
error!("Mutex can't be locked for checking cache entry");
CacheError::FailedToAcquiredMutexLockForCheck
})?;
let Some(cached_object) = lock.get(cache_key) else {
return Ok(None);
};
Ok(Some(cached_object.clone()))
}
}
/* ---------------------------------------------- */
/// Generate cache policy if the response is cacheable
pub(crate) fn get_policy_if_cacheable<B1, B2>(
req: Option<&Request<B1>>,
res: Option<&Response<B2>>,
) -> CacheResult<Option<CachePolicy>>
// where
// B1: core::fmt::Debug,
{
// deduce cache policy from req and res
let (Some(req), Some(res)) = (req, res) else {
return Err(CacheError::NullRequestOrResponse);
};
let new_policy = CachePolicy::new(req, res);
if new_policy.is_storable() {
// debug!("Response is cacheable: {:?}\n{:?}", req, res.headers());
Ok(Some(new_policy))
} else {
Ok(None)
}
}
fn derive_filename_from_uri(uri: &hyper::Uri) -> String {
let mut hasher = Sha256::new();
hasher.update(uri.to_string());
let digest = hasher.finalize();
general_purpose::URL_SAFE_NO_PAD.encode(digest)
}
fn derive_cache_key_from_uri(uri: &hyper::Uri) -> String {
uri.to_string()
}