lumosquad/APSF.cpp
2025-07-26 22:14:37 +02:00

272 lines
9 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// File : APSF.cpp
///////////////////////////////////////////////////////////////////////////////////
//
// LumosQuad - A Lightning Generator
// Copyright 2007
// The University of North Carolina at Chapel Hill
//
///////////////////////////////////////////////////////////////////////////////////
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// The University of North Carolina at Chapel Hill makes no representations
// about the suitability of this software for any purpose. It is provided
// "as is" without express or implied warranty.
//
// Permission to use, copy, modify and distribute this software and its
// documentation for educational, research and non-profit purposes, without
// fee, and without a written agreement is hereby granted, provided that the
// above copyright notice and the following three paragraphs appear in all
// copies.
//
// THE UNIVERSITY OF NORTH CAROLINA SPECIFICALLY DISCLAIM ANY WARRANTIES,
// INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
// FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS ON AN
// "AS IS" BASIS, AND THE UNIVERSITY OF NORTH CAROLINA HAS NO OBLIGATION TO
// PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
//
// Please send questions and comments about LumosQuad to kim@cs.unc.edu.
//
///////////////////////////////////////////////////////////////////////////////////
//
// This program uses OpenEXR, which has the following restrictions:
//
// Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
// Digital Ltd. LLC
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Industrial Light & Magic nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
#include "APSF.h"
#include <cstdio>
//////////////////////////////////////////////////////////////////////
// Construction/Destruction
//////////////////////////////////////////////////////////////////////
APSF::APSF(int res) :
_res(res)
{
// make sure kernel is odd dimensions
if (!(_res % 2)) _res++;
_kernel = new float[_res * _res];
_q = 0.999;
_R = 400.0f;
_D = 2000.0f;
_T = 1.001f;
_sigma = 0.5f;
_maxTerms = 600;
_I0 = 1.0f;
_retinaSize = 0.01f;
_eyeSize = 0.025f;
}
APSF::~APSF()
{
delete[] _kernel;
}
//////////////////////////////////////////////////////////////////////
// Legendre polymonial
//////////////////////////////////////////////////////////////////////
float APSF::legendreM(int m, float mu)
{
vector<float> memoized;
memoized.push_back(1.0f);
memoized.push_back(mu);
for (int x = 2; x <= m; x++)
{
float newMemo = ((2.0f * (float)x - 1.0f) * mu * memoized[x - 1] -
((float)x - 1.0f) * memoized[x - 2]) / (float)x;
memoized.push_back(newMemo);
}
return memoized[m];
}
//////////////////////////////////////////////////////////////////////
// scattering function at a point
//////////////////////////////////////////////////////////////////////
float APSF::pointAPSF(float mu)
{
float total = 0.0f;
for (int m = 0; m < _maxTerms; m++)
total += (gM(_I0, m) + gM(_I0, m + 1)) * legendreM(m, mu);
return total;
}
//////////////////////////////////////////////////////////////////////
// generate a convolution kernel
//////////////////////////////////////////////////////////////////////
void APSF::generateKernelFast()
{
float dx = _retinaSize / (float)_res;
float dy = _retinaSize / (float)_res;
int halfRes = _res / 2;
float* oneD = new float[_res];
float max = 0.0f;
float min = 1000.0f;
int x,y = halfRes;
for (x = 0; x < _res; x++)
{
// calc angle
float diffX = (x - halfRes) * dx;
float diffY = (y - halfRes) * dy;
float distance = sqrt(diffX * diffX + diffY * diffY);
if ((distance / _eyeSize) > (_R / _D))
oneD[x] = 0.0f;
else
{
float i = -distance * distance * _D * _D + _eyeSize * _eyeSize * _R * _R + distance * distance * _R * _R;
i = _eyeSize * _eyeSize * _D - _eyeSize * sqrt(i);
i /= _eyeSize * _eyeSize + distance * distance;
float mu = M_PI - atan(_retinaSize / distance) - asin((_D - i) / _R);
oneD[x] = pointAPSF(cos(mu));
min = (oneD[x] < min) ? oneD[x] : min;
}
max = (oneD[x] > max) ? oneD[x] : max;
}
// floor
if (min > 0.0f)
{
for (int i = 0; i < _res; i++)
if (oneD[i] > 0.0f)
oneD[i] -= min;
max -= min;
}
// normalize
if (max > 1.0f)
{
float maxInv = 1.0f / max;
for (int i = 0; i < _res; i++)
oneD[i] *= maxInv;
}
// interpolate the kernel
int index = 0;
for (y = 0; y < _res; y++)
for (x = 0; x < _res; x++, index++)
{
float dx = fabs((float)(x - halfRes));
float dy = fabs((float)(y - halfRes));
float magnitude = sqrtf(dx * dx + dy * dy);
int lower = floor(magnitude);
if (lower > halfRes - 1)
{
_kernel[index] = 0.0f;
continue;
}
float lerp = magnitude - lower;
_kernel[index] = (1.0f - lerp) * oneD[halfRes + lower] +
lerp * oneD[halfRes + lower + 1];
}
delete[] oneD;
}
//////////////////////////////////////////////////////////////////////
// save the kernel in binary
//////////////////////////////////////////////////////////////////////
void APSF::write(const char* filename)
{
// open file
FILE* file;
file = fopen(filename, "wb");
fwrite((void*)&_res, sizeof(int), 1, file);
fwrite((void*)&_q, sizeof(float), 1, file);
fwrite((void*)&_T, sizeof(float), 1, file);
fwrite((void*)&_I0, sizeof(float), 1, file);
fwrite((void*)&_sigma, sizeof(float), 1, file);
fwrite((void*)&_R, sizeof(float), 1, file);
fwrite((void*)&_D, sizeof(float), 1, file);
fwrite((void*)&_retinaSize, sizeof(float), 1, file);
fwrite((void*)&_eyeSize, sizeof(float), 1, file);
fwrite((void*)&_maxTerms, sizeof(int), 1, file);
fwrite((void*)&_kernel, sizeof(float) * _res * _res, 1, file);
fclose(file);
}
//////////////////////////////////////////////////////////////////////
// load a binary kernel
//////////////////////////////////////////////////////////////////////
void APSF::read(const char* filename)
{
// open file
FILE* file;
file = fopen(filename, "rb");
if (_kernel) delete[] _kernel;
fread((void*)&_res, sizeof(int), 1, file);
fread((void*)&_q, sizeof(float), 1, file);
fread((void*)&_T, sizeof(float), 1, file);
fread((void*)&_I0, sizeof(float), 1, file);
fread((void*)&_sigma, sizeof(float), 1, file);
fread((void*)&_R, sizeof(float), 1, file);
fread((void*)&_D, sizeof(float), 1, file);
fread((void*)&_retinaSize, sizeof(float), 1, file);
fread((void*)&_eyeSize, sizeof(float), 1, file);
fread((void*)&_maxTerms, sizeof(int), 1, file);
_kernel = new float[_res * _res];
fread((void*)&_kernel, sizeof(float) * _res * _res, 1, file);
fclose(file);
}
//////////////////////////////////////////////////////////////////////
// write the kernel to a PPM file
//////////////////////////////////////////////////////////////////////
void APSF::writePPM(const char* filename)
{
unsigned char* ppm = new unsigned char[3 * _res * _res];
for (int x = 0; x < _res * _res; x++)
{
ppm[3 * x] = 255 * _kernel[x];
ppm[3 * x + 1] = 255 * _kernel[x];
ppm[3 * x + 2] = 255 * _kernel[x];
}
WritePPM(filename, ppm, _res, _res);
delete[] ppm;
}