gwrizienn/examples/dilithium.rs

77 lines
1.8 KiB
Rust

//! Example of simplified Dilithium with q=8380417
use gwrizienn::{
matrix::Matrix,
ntt::{Ntt, NttInv},
ring::Ring,
vector::Vector,
*,
};
// Implement Zq
ring!(Zq, u32, u64, i64, 8380417);
// Implement Rq = Zq/(x^256+1)
// zeta=1753 is the first 512-th root of unity mod q
poly!(Rq, 256, Zq, u32, u64, u32, u64, 8380417, 1753);
fn high_bits<const N: usize>(mut v: Vector<Rq, N>) -> Vector<Rq, N> {
for vi in v.0.iter_mut() {
for vij in vi.0.iter_mut() {
vij.0 -= vij.0 % 190464;
}
}
v
}
fn main() {
let mut rng = rand::thread_rng();
let uniform = Zq::uniform();
let ball_c = Zq::uniform_ball(1);
let ball_s = Zq::uniform_ball(2);
let ball_y = Zq::uniform_ball(131071);
// generate secret key
let a = Matrix::<Rq, 4, 4>::random(uniform, &mut rng);
let s1 = Vector::<Rq, 4>::random(ball_s, &mut rng);
let s2 = Vector::<Rq, 4>::random(ball_s, &mut rng);
// random value for signing
let y = Vector::<Rq, 4>::random(ball_y, &mut rng);
// challenge
let c = Rq::random(ball_c, &mut rng);
// use NTT for fast multiplication
let a = a.ntt();
let s1 = s1.ntt();
let s2 = s2.ntt();
let y = y.ntt();
let c = c.ntt();
// generate public key
let t = &a * &s1 + s2;
// commitment
let w = &a * &y;
// proof
let z = y + s1 * &c;
// verify
assert_eq!(
high_bits((&a * &z - t * &c).ntt_inv()),
high_bits(w.ntt_inv())
);
// let uniform = Zq::uniform();
// let ball_c = Zq::uniform_ball(1);
// let ball_s = Zq::uniform_ball(2);
// let ball_y = Zq::uniform_ball(131071);
//
// let a = Matrix::<Rq, 4, 4>::random(uniform, &mut rng).ntt();
// let s1 = Vector::<Rq, 4>::random(ball_s, &mut rng).ntt();
// let s2 = Vector::<Rq, 4>::random(ball_s, &mut rng).ntt();
// let y = Vector::<Rq, 4>::random(ball_y, &mut rng).ntt();
// let c = Rq::random(ball_c, &mut rng).ntt();
//
// let t = &a * &s1 + s2;
// let w = &a * &y;
// let z = y + s1 * &c;
}