Feature-complete for implementing real crypto

This commit is contained in:
Pascal Engélibert 2025-08-29 22:58:23 +02:00
commit f34f931030
13 changed files with 2684 additions and 306 deletions

77
examples/dilithium.rs Normal file
View file

@ -0,0 +1,77 @@
//! Example of simplified Dilithium with q=8380417
use gwrizienn::{
matrix::Matrix,
ntt::{Ntt, NttInv},
ring::Ring,
vector::Vector,
*,
};
// Implement Zq
ring!(Zq, u32, u64, i64, 8380417);
// Implement Rq = Zq/(x^256+1)
// zeta=1753 is the first 512-th root of unity mod q
poly!(Rq, 256, Zq, u32, u64, u32, u64, 8380417, 1753);
fn high_bits<const N: usize>(mut v: Vector<Rq, N>) -> Vector<Rq, N> {
for vi in v.0.iter_mut() {
for vij in vi.0.iter_mut() {
vij.0 -= vij.0 % 190464;
}
}
v
}
fn main() {
let mut rng = rand::thread_rng();
let uniform = Zq::uniform();
let ball_c = Zq::uniform_ball(1);
let ball_s = Zq::uniform_ball(2);
let ball_y = Zq::uniform_ball(131071);
// generate secret key
let a = Matrix::<Rq, 4, 4>::random(uniform, &mut rng);
let s1 = Vector::<Rq, 4>::random(ball_s, &mut rng);
let s2 = Vector::<Rq, 4>::random(ball_s, &mut rng);
// random value for signing
let y = Vector::<Rq, 4>::random(ball_y, &mut rng);
// challenge
let c = Rq::random(ball_c, &mut rng);
// use NTT for fast multiplication
let a = a.ntt();
let s1 = s1.ntt();
let s2 = s2.ntt();
let y = y.ntt();
let c = c.ntt();
// generate public key
let t = &a * &s1 + s2;
// commitment
let w = &a * &y;
// proof
let z = y + s1 * &c;
// verify
assert_eq!(
high_bits((&a * &z - t * &c).ntt_inv()),
high_bits(w.ntt_inv())
);
// let uniform = Zq::uniform();
// let ball_c = Zq::uniform_ball(1);
// let ball_s = Zq::uniform_ball(2);
// let ball_y = Zq::uniform_ball(131071);
//
// let a = Matrix::<Rq, 4, 4>::random(uniform, &mut rng).ntt();
// let s1 = Vector::<Rq, 4>::random(ball_s, &mut rng).ntt();
// let s2 = Vector::<Rq, 4>::random(ball_s, &mut rng).ntt();
// let y = Vector::<Rq, 4>::random(ball_y, &mut rng).ntt();
// let c = Rq::random(ball_c, &mut rng).ntt();
//
// let t = &a * &s1 + s2;
// let w = &a * &y;
// let z = y + s1 * &c;
}

101
examples/ntwe.rs Normal file
View file

@ -0,0 +1,101 @@
//! Example of simplified NTWE scheme (Gärtner 2024)
use gwrizienn::{
matrix::Matrix,
ntt::{Ntt, NttInv},
ring::{Lift, Ring},
vector::{Vector, VectorRef},
*,
};
use num_traits::{Inv, One, Zero};
// Implement Zq
ring!(Zq, u32, u32, i32, 50177);
// Implement Rq = Zq/(x^256+1)
// zeta=66 is the first 512-th root of unity mod q
poly!(Rq, 256, Zq, u32, u32, u32, u64, 50177, 66);
// Implement Zb and Rb with a big modulus for NTT in Z2q
// chosen because > N*q^2
ring!(Zb, u64, u128, i128, 644539222529);
poly!(
Rb,
256,
Zb,
u64,
u128,
u64,
u128,
644539222529,
483489047161
);
//Implement Z2q
ring!(Z2q, u32, u64, i64, 100354);
// Implement R2q
// A different macro must be used because 2q is not prime.
poly2!(
Rq,
Rb,
R2q,
256,
Z2q,
u32,
u64,
u32,
u64,
i64,
i64,
50177,
644539222529
);
const L: usize = 3;
const M: usize = 2;
fn main() {
let mut rng = rand::thread_rng();
let uniform = Zq::uniform();
let ball_c = Z2q::uniform_positive_semiball(1);
let ball_s = Zq::uniform_ball(1);
let ball_y = Zb::uniform_ball(55);
// generate secret key s = [f s0 e]
let mut s = Vector::<Rq, { L + M + 1 }>::random(ball_s, &mut rng);
let f0 = &mut s.0[0];
*f0 *= Zq(2);
*f0 += Zq::one();
let s_ntt = s.clone().ntt();
let f = &s_ntt.0[0];
let s0: VectorRef<_, L> = s_ntt.get_sub(1);
let e: VectorRef<_, M> = s_ntt.get_sub(1 + L);
// generate public key
let a0 = Matrix::<Rq, M, L>::random(uniform, &mut rng);
let b = (&a0.clone().ntt() * s0 + e) * &f.clone().inv();
let mut a = Matrix::<R2q, M, { L + M + 1 }>::zero();
a.set_column(0, (b.ntt_inv().lift() * Z2q(100352)).get_ref());
a[0][0] += Z2q(50177);
a.set_columns(1, &(a0.lift() * Z2q(2)));
for i in 0..M {
a[i][1 + L + i] += Z2q(2);
}
let a: Matrix<Rb, M, { L + M + 1 }> = a.lift();
let a = a.ntt();
// random value for signing
let y = Vector::<Rb, { L + M + 1 }>::random(ball_y, &mut rng);
let y = y.ntt();
// commitment
let w: Vector<R2q, M> = (&a * &y).ntt_inv().lift();
// challenge
let c = R2q::random(ball_c, &mut rng);
let cb: Rb = c.lift();
// proof
let s: Vector<Rb, { L + M + 1 }> = s.lift().lift();
let z = y + s.ntt() * &cb.ntt();
// verify
let mut w2: Vector<R2q, M> = (&a * &z).ntt_inv().lift();
w2[0] -= c * Z2q(50177);
assert_eq!(w, w2);
}